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Abstract: In this work, we propose a 3D dynamic optimization model that enables the design of 

an undergrround mine ore pass system with uncertainties. Ore transportation costs and ore pass 

development costs are quantified by triangular fuzzy numbers. Transportation costs are treated as 

production costs, and they vary over the duration of mining, operation, while development costs 

of ore passes are treated as an investment, and they are treated as constant. The developed model 

belongs to the class of fuzzy 0-1 linear programming, models, where the fuzzy objective cost function 

achieves a minimum value, with respect to given set of techno-dynamic constraints. Searching, for 

optimal value in the fuzzy environment is a hard task, and because of that, we developed a new 

ranking, function which transforms the fuzzy optimization model into a crisp one. A triangular 

fuzzy number can be presented as a triangular graph G(V,E) composed of vertices and edges. The 

X-coordinate of the Torricelli point of a triangular graph presents the crisp value of a triangular fuzzy 

number. The use of this model lets us know the optimal number of ore passes, optimal location of ore 

passes, and optimal dynamic ore transportation plan. 

Keywords: ore pass; optimization; fuzzy linear programming; triangular graph; Torricelli point; 

ranking, function 

MSC: 90C90 

1. Introduction 

An ore pass is a vertical or near-vertical opening, through which ore falls under gravity 

from upper levels to the lowest haulage level. In most cases, an ore pass system is associated 

with sublevel mining, methods. It arises from the fact that a sublevel mining, method is 

used when the dip of the ore deposit is steep (greater than about 55 degrees). A consistent 

issue in the optimization of ore pass system is the regulation of the total number of ore 

passes which connect a defined number of sublevels and the definition of ore pass locations 

as well. The aim of this paper is to understand challenges associated with such complex 

combinatorial problems and provide a tool for solving them. Generally, the ore passes 

optimization problem belongs to the class of location-allocation problems. In nature, the 

ore passes optimization problem is a 3D problem, because sublevels lie on distinct parallel 

planes. The dynamic nature of the problem comes from the dynamic plan of mining, while 

uncertainty is associated with the fluctuation in ore transportation costs and the costs of 

ore pass development. 
Many authors have investigated the ore pass system in the context of its dimension, 

stability, shape or other structural design parameter. Maree [1] analyzed the possibility of 
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developing five new ore pass systems which would improve the existed haulage system 

and fulfill the planned production capacity. Also, Maree identified several critical design 

parameters that influence on optimal ore pass system creation and recommended some 

solutions to achieve the best practice function of an ore pass system. Hadjigjeorgiou and 

Stacey [2] proposed six design principles during, the ore pass design process to avoid 

stability problems and failures of an ore pass. They sug;gested the creation of a strategic 

plan that includes numerous tactical operations and actions to prevent ore pass collapses 

in order to provide ore pass longevity. Skawina et al. [3] studied the interrelationship and 

interdependence between ore passes, equipment for LHD operations and production rates. 

Fifteen scenarios for each of the three production areas have been simulated considering, 

different number of ore passes and LHD machines where the effect of the ore pass loss on 
the LHD operations, such as production rate, is analyzed. Sredniawa et al. [4] presented 

a process for the renovation of ore passes based on various factors that influence ore 

pass longevity in Kiirunavaara Mine, in Sweden. Two production areas with a total o 

eight ore passes have been analyzed, and the renovation plan has been estimated for each 

ore pass providing a great support for mine planners to create highly reliable long-term 

production plans. Adjiski et al. [5] used the discrete element method (DEM) to analyze 

ore pass system configurations. A total of nine scenarios have been simulated considering, 

different geometric parameters of ore pass and material flow in order to recognize potential 

damage zones and to minimize the hang-ups and wall degradation. Hadjigeorgiou et al. [6] 

presented two case studies at Brunswick mine, in Canada, relating to an examination of the 

influence of structural design parameters on ore pass systems. In the first case study, ore 

pass system degradation is caused by the complex rock structure surrounding the ore pass, 

while in the second case study, an ore pass system is exposed to the combined influence 

of high-stress conditions prevailing in a monitored mining, zone and the high-velocity of 

material flow through the ore pass. Chen et al. [7] developed a new pluggging technology 

based on a composite bar combined casing, with pre-stressed cables for a collapsed ore 

pass. A detailed analysis and the effects of building, up the applied plugging system for 

a destroyed main ore pass is demonstrated in the case study of the Xingshan Iron Mine 

in China. Esmaieli et al. [8] analyzed the stability of the ore pass at Brunswick mine in 

Canada. The paper is based on analysis of the high stress and material flow as two critical 

factors influencing the structural stability of the ore pass as well as its useful life. Gardner 

and Fernandes [9] showed an analysis of the ore pass rehabilitation through the three 

case studies from Impala Platinum Limited. They concluded that ore pass deterioration 

is primarily caused by complex geological conditions and stress regime governing in the 

ore deposit. Greberg et al. [10] evaluated the possible options of a haulage system in an 

underground mine in Sweden as a case study. By using, discrete event simulation, the 

haul truck transportation system is analyzed as an alternative variant of ore pass for the 

rock mass transportation at an underground sublevel caving mine method. Li et al. [11] 

presented the optimization of an underground mine transportation system based on the 

wolf colony algorithm. The paper demonstrated the transportation route of the mining, 

equipment and optimized the total tonnage of the mined ore from seven stopes to the 

two ore passes. A similar study is represented by Hou et al. [12] in the underground gold 

mine in Shandong Province, China. In this paper, transportation routes containing, six 

stopes and two ore passes are illustrated using a simulation model where the number of 

loaders and trucks are optimized. Koivisto [13] provided an exhaustive analysis of the ore 

pass design including longevity, inclination, dimension, support, material flow, ore pass 

rehablilitation, etc., in Kittila Mine as a case study. Also, Koivisto analyzed the problem of 

ore pass location selection by simulating different scenarios of the optimal ore pass location, 

in which Scenario 1 was accepted as the most economically sustainable solution. 

Bearing in mind the importance of this problem, we developed an optimization model 

to enable mining, engineers to design the most efficient ore pass system. The mining, 

business is burdened by many uncertainties which are primary related to the investment 

and production costs. To quantify these uncertainties, we apply the concept of fuzzy theory, 
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i.e., the concept of triangular fuzzy numbers. The optimization model is composed of the 

two components. The first component refers to the fuzzy cost objective function, which 

should be minimized, while the second component refers to the set of techno-dynamic 

constraints that must be met. According to the previously mentioned facts, our problem 

can be classified as a fuzzy 0-1 linear programming; model. To reduce the complexity 

of the fuzzy environment, within linear programming, we transform the fuzzy objective 

uunction into a crisp one. The transformation is based on the novel Torricelli-Simpson 

ranking function. A prerequisite to apply the Torricelli-Simpson ranking function relates 

o the normalization of the original triangular fuzzy number. It includes normalization 

of the smallest, most promising, and largest values, respectively. Also, the value of the 

membership function of the most promising, value must be normalized. The normalized 

riangular fuzzy number is now treated as a triangular graph, composed of vertices and 

edges. The Torricelli point is a single point, which lies within a triangular graph, whose 

otal Euclidean distance from the normalized values, excluding, the normalized most 

promising, value, is minimal. The Torricelli point represents an intersection of Simpson 

ines, and its x-coordinate is a crisp value of the normalized triangular fuzzy number. The 

crisp value of the original triangular fuzzy number is obtained via the inverse process 

of normalization. The Torricelli-Simpson ranking function creates the crisp 0-1 linear 

programming environment, and the ore passes optimization problem can be solved via 

existing, methods. 

A comparison with some of the existing defuzzification methods has shown that the 

novel method can create a crisp value of a triangular fuzzy number with a high level of 

reliability. The stability analysis shows stable results regardless of whether the triangular 

fuzzy number is symmetric or non-symmetric. Accordingly, the developed ranking function 

is capable of being used in the creation of the crisp value of a triangular fuzzy number. 

The Torricelli-Simpson ranking function is also capable of ranking symmetric triangu- 

lar fuzzy numbers with equal modes and different spreads. Additional capability relates to 

the ranking of symmetric triangular fuzzy numbers with equal modes but with different 

membership functions. 

The efficiency of the proposed ore pass system optimization model is evaluated on the 

hypothetical ore deposit, where the sublevel method is applied as a means of underground 

mining. To the best of the authors” knowledge, this is the first optimization model for an 

underground mine ore pass system. Because of that, we are unable to compare the existing; 

models and highlight their limitations. Currently, undergrround mine designers locate ore 

passes primarily based on previous experience without the use of any support tools. The 

hypothetical case study took into account all possible combinations between a finite set 

of stopes and ore pass locations. Accordingly, the model is characterized by high level of 

precision (accuracy). 
The proposed methodology has several advantages which can be highlighted 

as follows: 

Novel method of defuzzification of triangular fuzzy numbers; 

Ranking of the special types of triangular fuzzy numbers; 

Optimal number of ore passes from the finite set of potential ore pass locations; 

Optimal locations of ore passes from the finite set of potential ore pass locations; 

Optimal plan of ore transportation from stopes to ore passes; 
Provision of support to mining engineers in the process of designing,  underground mines. 

Sensitivity analysis, which considers the changes in ore transportation costs, shows 

the sensitivity of the developed model toward the direction of increasing the number of ore 

passes as the costs rise. 

The paper is organized as follows. Section 1 comprises the Introduction and a brief 

literature review as well as the main objectives of the developed model. The transformation 

of a triangular fuzzy number into a crisp (non-fuzzy) number via the Torricelli-Simpson 

ranking function is extensively described in Section 2. An ore pass system optimization 

model for sublevel mining is illustrated in Section 3, with special attention given to the
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fuzzy objective function of the developed model. Section 4 relates to a numerical example, 

the obtained results of which are comprehensively described therein. A sensitivity analysis 

of the model is presented in Section 5, while the concluding, remarks and directions of 

future research are discussed in Section 6. 

2. From Fuzzy to Crisp Linear Programming Model via Torricelli-Simpson 
Ranking Function 

The classical 0-1 linear programming, aims to minimize (maximize) an objective 

function subject to a finite set of linear constraints, where variables take a value of 0 or 1. 

The problem is formulated in the following, way: 

min f = cx, 

s.t.Ax < b, () 
x c [0,1]. 

wherecT = (ci,C)}-.-, c„)T e R" presents the cost (benefit) vector, x = (X1,X2,..., x„)T c R 

is a vector of variables, b = (bi,b,..., b„)T c R” is a vector of right-hand-side constraint 

coefficients, and A — [u,·]·] mxn R is a matrix of left-hand-side constraint coefficients. 

The presented formulation of 0-1 linear programming is one of the common methods 

used to find out the best solution for different optimization problems, with assumptions 

that all coefficients are crisp in nature. However, real-world problems are inaccurate and 

implicit. Therefore, coefficient uncertainties must be considered, and a triangular fuzzy 

number (TFN) is very suitable and useful for it. Triangular fuzzy numbers belong to fuzzy 

theory, which defines the concept of membership function to express the uncertainty of 

variables [14]. A membership function is defined by the degree of acceptance of a variable 

as a member of the fuzzy set 4; PŽ(X) :X—|0,1]. 

Definition 1. 4A friangular fuzzy number ;'i = (a,b,c) is defined as a triplet, where a, b and c are 

the smallest, most promising, and largest values, respectively. The membership function of TFN has 

the following conditions: 

, x<a, 
x-a 

w.O)=4e XM 0) 
4 =, b<x<c, 

0, xXOC-C. 

A plot of a common TFN is presented in Figure 1. 

x 

Figure 1. A triangular fuzzy number.
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So, a fuzzy 01 linear programming model is performed based upon Equation (1), and 

is as follows: 

s.t.Zx < š, (3) 

Further, a triangular fuzzy number can be presented as an artificial triplet (a,b,c) with 

the following characteristics: 

a<1, 

b<1, (4) 

c<l. 

A triangular fuzzy number with previously characteristics can be created by normalization. 

Definition 2. 4A normalized triangular fuzzy number (NTFN) is defined as follows: 

0, X <aN, 
X—dN 

- (x) = | Dy—aN7 aN <X<DN, (5) 
cN—_X 
ON DNSXS<CN, 

0, X >CN. 

where aN, bN and cnN are the smallest, most promising, and largest normalized values, respectively. 

The membership function of TFN must also be transformed. The normalized values of a triplet 

(a,b,c) and the ransformed membership function are calculated in the folloving way: 

_ |MA - Vprprev HiaN)=0, 
AN = +DN = „24:1724„2' H(bN)=1+ n;rl' (6) 

ĆN — ip H(N) -0. 
where n is a triplet (n = 3). An example of normalization is presented in Figjure 2. 

-110-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 
x -0.9 -0.8 -O0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 O 0.1 0.2 0.3 04 0.5 0.6 

x 

Figure 2. Transformation of TFN to NTFN. 

Normalization is a prerequisite for the application of the Torricelli-Simpson ranking; 

function (TSRF) in solving a fuzzy 0—1 linear problem. The concept of a ranking function is 

closely related to the method of defuzzification of a TFN. A ranking function (RF) converts 

a fuzzy problem into a crisp one, and it maps each TFN into the real line, RF = TFN R. 

Different approaches of a RF exist. Yager proposed a ranking function which converts fuzzy 

numbers over the unit interval [15]. Chen ranked fuzzy numbers by minimizing,the set 

and maximizing the set [16]. Wang applied an integral value to rank fuzzy numbers [17]. 

Adamo proposed the decision trees method as a ranking function for data expressed by 

a common language whose semantic representations are fuzzy numbers [18]. GonzAlez
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developed the general ranking function approach as a ranking, process using a mean value 

and an interval relation [19]. Chutia developed a ranking technique which uses the notion 

of value and a multiple of an ambiguity inclusion-exclusion function [20]. Duta proposed 

a sophisticated ranking method based on the concept of the exponential area of the fuzzy 

numbers [21]. Zou et al. ranked fuzzy numbers via a two-dimensional Monte Carlo 

simulation technique [22]. Wang and Mo introduced left and right deviation degree of 

fuzzy numbers as measure of fuzziness, which is the global attribute of fuzzy numbers [23]. 

Pourabdoliah et al. created a close-form formula for alpha-cut defuzzification that involves 

both the membership function and its derivative [24]. Asady and Zendehnam defuzzified 

fuzzy numbers using a minimizer of the distance between the two fuzzy numbers [25]. 

Consider NTFN, and denote triangle vertex as V; (x;j, M(x;)), i = 1,2,3, where +j is a 

value of fuzzy event and }i(y;) is a transformed membership function of event (see Figure 3). 

The coordinates of the vertices are: Vi (aN,0), V> (bN,1 + 1.333) and V (cy,0). 

25 3 
______________________________ „ V,(by2.333) 

0.5 _ 

V,(ay,0) Va(cy,0) 
x 

Figure 3. Coordinates of NTFN vertices. 

Definition 3. NTFN is a graph G = (V, E), where V and E present a set of vertices and a set of 

edges, respectively. 

Each edge connects a pair of vertices. Another term for a graph defined in this way 

is a network. In Figure 3, we have V = {Vi, V», Va} and E = {ei, e>p, esa}. Edge e connects 

vertices Vi and V», edge e> connects Vi and Vya, and edge eg connects V» and Va. 

The Euclidean Steiner tree problem looks for a network of minimal total length which 

spans over a given set N composed of n points in the Euclidean plane. Brasil et al. [26] 

described the Euclidean Steiner tree problem in the following way. 

Definition 4. Find a geometric network T = (V, E) such that N C V and S = V\\N is a set of 

points known as Steiner points, and such that } „eg|e| is minimal. 

The origins of the Euclidean Steiner tree problem are closely related to the Fermat-Torricelli 

problem, which can be thought of as the simplest non-trivial case of the Steiner problem 

for n = 3. The problem is to find a single point in the plane whose total Euclidean distance 

from three given points is minimal. The Italian physicist and mathematician Evangelista 

Torricelli solved the problem in a geometric way. The method can be formulated as follows: 

•  Startbyjoining the three points in the plane to form a triangle; 

• Constructthree equilateral triangles, one on each edge of the original triangle; 

• Constructthree circles circumscribing, each equilateral triangle. 

The point at which all circles intersect is known as the Torricelli point (T). The Simpson 

method works by drawing, a Simpson line from each vertex of the equilateral triangles, 

which do not belong to the original triangle, to the opposite vertex, which belongs to the 
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original triangle. The Simpson lines also intersect at the Torricelli point. The obtained point 

lies inside a triangle and has exactly three incident edges meeting at 120? degree angles. 

Neither of these methods works properly if any of the angles of an original triangle are 

larger than 1209. This is the main reason we created NTFN. Through the normalization 

of TFN, we avoid such a situation, and all angles of NTFN are smaller than 120%. The 

construction of the Torricelli point of NTFN, via both methods, is presented in Figure 4. 

_ yO ıl ,\ 

Vo(by,2.333) Vi \ TN, AZEE: 

% 

Vi (ax.0) Va(ca.0) 

V 
Figure 4. Application of Torricelli and Simpson geometric methods for NTFN. 

Normalized coordinates of the Torricelli point are T (TN, u(TN)). The algebraic method 

for solving the Torricelli point problem, based on the geometric solution, is composed of 

the following steps in succession: 

Step 1. Calculate the coordinates of a vertex Va, 

Step 2. Obtain an equation of Simpson line sa, which connects vertex Va and vertex Vya, 

Step 3. Calculate the coordinates of a vertex Ve, 

Step 4. Obtain an equation of Simpson line s>», which connects vertex V« and vertex V», 

Step 5. Find the intersection of the two Simpson lines, ss and s». 

Step 1. Vertex Va presents an intersection of lines li and l» (see Figure 5). For simplicity, 

we use standard notation for coordinates, x and y, although y = H(x). A gradient (slope) of 

a line l; equals: 

gı = tan (60 | arctan( \bčžžw\))' 
arctan( \bš·ž?m) = 90,ifaN = bN. 

0) 

The equation of line l,, which has a gradient of g and passes through a vertex 

Vi(aN,O),is: 

hbiy=Sı(x-aN) =tan(60+arctan(&))(xfu;v), (8) 
|bN — dN| 

A gradient of line !» equals: 

g tan(30 arctan(\bžššgw\)), 

arctan( \b'ž'_šššm) = 0,ifaN = bN. 
(9) 
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IK 
S 
ii . 

V,. 

b 

— Va(cy.0) 
u [_ 

Vi{ay.0)Tx X 
N 

S e 

N ih 

60? a ON 

Ve 

Figure 5. Vertices Va and V as intersections of two lines. 

The equation of line !», which has a gradient of g and passes through a vertex V> (bN, 

2.333), is: 

by — 
b : y = S(x — bN) + 2.333 tan(30 arctan(l žSBŠNI))(x bN)+2.333, - (10) 

The coordinates of vertex Vu are as follows: 

đN — g?bN + 2.333 đaN — g?bN + 2.333 
Va(xa,ya) = V4(g1 N gZ_N , (g1 N gZ_N “N))/ (1) 

a . Sı – 32 

Step 2. The equation of the Simpson line sa, which passes through two vertices, Va 

and Vy, is as follows: 

aN —2N +2.333 _gl(m N—S2bN *“N) 
59 ı 92> (Y S1dN — gsz + 2.333) e (glaN _ gng + 2.333 uN) (2) 

CN_ž%bgz-m ı – 9? gı — 9? 

Step 3. Vertex Ve presents an intersection of lines Is and lu (see Figure 5). The gradients 

of lines l3 and la are: ga = tan(120) V 3 and ga = tan(60) = V3; so, the equations of 

lines 13 and l+ are as follows: 

b:y= f\/Š(x — aN), (13) 

l 1y= \/Š(X —C-CN), (14) 

The coordinates of vertex V are as follows: 

aN + C đađN — C 
Ve(xe, 6) Ve( N2 N,\/Š( NZ N)), (15) 

Step 4. The equation of the Simpson line s>, which passes through two vertices Ve and 

V», is as follows: 

2.333 — V3{ “NN a + C aN — C . 
S:y be”·SHN )(r N2 N) } \@( N2 N);szzx bN,if bN — aN = CN — bN, (16)
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Step 5. As we mentioned, the intersection of Simpson lines creates the Torricelli point. 

Let us introduce new notations to simplify searching for the coordinates of intersection: 

sa : y = o3{X — g3) + 0%, (17) 

s 1 = O2(X — 02) + 0, (18) 

Solving, the system of Equations (17) and (18), we obtain the following, x-coordinate of 

the Torricelli point of NTFN as follows: 

T, - d303 — 2202 + 02 — 0a 
N ; 19 —0 (19) 

where: 

dN g2bN +2.333 _ dN —S2bN +2.333 
3 03 ii Slzfgz 08 4 ii Sžzfšz NJ (20) 

2.333—V/5{ “NN i _ 
— — -. —) MNŽEN da = V3{N5*N)), 1) 

E 

The single number or crisp value of TFN based on the Torricelli-Simpson ranking; 

function (TSRF) is calculated as follows: 

TSRF (Ž\) =TN:Va +b} +-C2, (2) 

The additional benefits of the Torricelli-Simpson ranking function are presented in the 

Appendix A section. The TSRF is capable of ranking triangular fuzzy numbers which have 

the same mode but different symmetric spreads. It is also capable of ranking triangular 

fuzzy numbers with different values of the membership function. 

Let us consider the second part of Equation (16), s» : x = bN,if DN — 4N = CN — bN. 

Obviously, it is a symmetric TFN, and we used that to simplify the calculation of the 

Torricelli-Simpson ranking function. 

Simplification means searching for the intersection between line s> and the Y-axis only. 

. . . . 2333 VO{ ND NI / awiey aN—eN 
The intersection between Simpson line s> : y _NEN (x a y ) -V3 ( a gp ) 

N I 

and x-axis is defined as follows: 
A·:B-C 

5N=T, (23) 

where: ( ) 

2.333 — V3{ 2NN a 
. NTCN., dN — CN 

A by — NEN ;B > \/Š( 2 ) (24) 
pJ 

Now, the crisp value of the TFN is calculated as follows and shown in Figure 6. 

SRF(Ž) =SN:Va) +b} +-C2, (25) 

To solve the problem defined by Equation (3), we transform it into an equivalent crisp 

form, replacing the fuzzy objective function and fuzzy constraints with: 

min f = deff(z)x, 

s.t.deff(Ž\)x < deff(Z) , (26) 

x c [0,1].
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where abbreviation “deff” denotes the defuzzified value of TFN; and the Torricelli-Simpson 

or Simpson ranking function is TSRF (Z) or SRF (Ž\) , respectively. The crisp problem is 

now solved by using standard linear programming methods. 

1.2 

1 

0.8 

Figure 6. Torricelli-Simpson ranking, function of TFN. 

3. Ore Passes Optimization Model for Sublevel Mining, 

3.1. Sublevel Mining 

Sublevel mining is an underground mining, method which is intended for the excava-– 

tion of deeply situated massive orebodies. The orebody is divided into vertical intervals 

through horizontal openings called production drifts. So, a sublevel is a vertical section of 

the orebody which is limited, with two production drifts on various neighboring levels. 

A sublevel drift is driven along to the strike of an orebody, and it is in the footwall. The 

main purpose of a sublevel drift is to connect production drifts and provide ore trans- 

portation from stopes to ore passes, and it also performs the ventilation of stopes. Ore 

passes are positioned along the strike of the ore body in the vicinity to the sublevel drift. 

Several sublevels make up one mining horizon, and one main haulage drift is assigned 

o each horizon. Mining activities start at the uppermost sublevel of the mining horizon 

and proceed sequentially downward to the lowest sublevel of the mining, horizon. The 

main haulage level is directly located below the lowest sublevel. Hence, the mining front 

advances toward the main haulage drift, while in each sublevel, the mining, front advances 

rom hanging wall to the footwall, toward the sublevel drift. In each sublevel, the ore is 

drilled in a fan-shaped pattern along the production drift at the constant horizontal dis- 

ance, called the burden. Then, holes drilled into ore are filled with explosives for blasting,. 

Load haul dump equipment is used to transport blasted ore from stopes to the ore passes. 
This sequence of activities is repeated in a cyclical way. From the bottom of each ore pass, 

ore is transported along the main haulage level to the main conveyance system and further 

o the surface [27—30]. 

3.2. The Model 

An ore pass is a vertical or near-vertical opening, which is created during, underground 

mining,  operations, through which ore falls under gravity to the lowest designed level. 

Before formulating the underground ore passes optimization problem, a number of things 

are assumed, and these are: 

Access system to the ore body is designed; 
Mining method parameters are defined; 

Sublevel access system is designed; 
Mining plan is defined; 

Set of potential ore pass locations is finite; 

Circular-shaped ore pass with adequate cross-sectional dimensions (area) is adopted; 

Safe distance between two operating, ore passes is defined.
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In the optimization problem of the ore pass system, we firstly form the objective 

function. It describes the required problems by suitable equations. This is followed by 

setting, up a goal, which can be maximal or minimal, in the spirit of an objective function. 

In finding the feasible solution, there are technical requirements (constraints) that must be 

met, and the constraints are expressed by a set of equations. Ore pass system optimization 

can be treated as a location-allocation problem. This is a strategic decision-making problem 

concerning the selection of the best subset of ore passes from a set of potential locations and 
the allocation of quantities of mined ore to the selected locations, over a defined period. An 

inefficient solution to the problem can lead to a bottleneck in production and can severely 

affect the mining, business. 

Suppose there is an ore pass which connects production sublevels and enables ore 

to fall from each sublevel to the main haulage level. The following operations are closely 

related to the ore pass system organization: 

•  Operation 1: blasted ore is transported from a stope to the dumping point by the 

load-haul-dump vehicle (see Figure 7). The ore is hauled through the production drift. 

• Operation 2: at the dumping point, ore is dumped into an ore pass and ends up at the 

loading, point, which is located at the bottom of an ore pass, near the haulage drift. 

•  Operation 3: at the loading point, ore is also loaded by a loader and hauled to the main 

transportation system. The ore is hauled through the main haulage drift (see Figure 8). 

Figure 7. Load-haul-dump (LHD) vehicle in operation on sublevel; figure adopted from [31] 

and transformed. 

Sublevel drift 
I Unloading drift ubleve dri 

F. edie |. | Fo!B_ 
Last sublevel Production drift 

Vertical ore pass 

Main haulage 
” drift 

Loading drift LHD maneuver drift 

LHD vehicle Main haulage level 

Figure 8. Operations relating, to an ore pass. 

The concentration point is a point where the sublevel drift and stope production drift 

cross each other, and where the entire quantity of ore from a stope is concentrated. Note 

that this is an artificial point which is defined only for the purpose of optimization, and 

the ore is not dumped at this point. It can be treated as a center of gravity of a stope. The
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sublevel 

t=T 

sublevel O - ... - —~ QO> 

t=1 t=2 t=T 
O O „.|O — O> 

section concentration point (SCP) is the center of gravity of a stope part, which should be 

mined out according to a mining plan. 

Graph theory is a capable concept which helps us to understand the ore passes 

optimization problem by visualization. As the first step, we present the vertical cross- 

section, longitudinal cross section and horizontal cross-section of an ore pass system in 

Figures 9-11, respectively. Cross-sections contain the position of sublevels; possible mining; 

plan on sublevels; ore pass positions; location of concentration points and dumping, and 

loading points; positions of production and sublevel drifts; and position of the main haulage 

drift. The unloading drift is a section of production drift between the concentration and 

dumping point, while the LHD maneuver drift is a section of the loading drift. Usually, the 

loading, and main haulage drift intersect at a right angle. 

mining plan for /=1 

sublevel _ ) - ... -*-» 

ore flow 

mining plan for /=2 

Jj-th ore pass t=1 t=2 t= 

sublevel O - -_·—' 

mining plan for /=3 

t=1 t=2 

O . dWumpingpoint 

O - concentrtion point 

mining plan for /=L QO - section concentration point 

main haulage level D loading point 

Figure 9. Vertical cross section of an ore pass. 

Time period fe[1,7 

ore pass 1 ore pass 2 ore pass 3 ore pass n 

j=1 j= j=3 j=n 

dumpingpins{| _ & | «&Č/(e ı, fe • sublevel 1, /=1 

dumping points • • • • sublevel 2, /=2} 

dumping points • • • • sublevel 3, /=3 

dumping points | — J—=— e J ... • sublevel L, /=L • • 

loading points _ 60 – i –——>—.4a . ——— main haulage level 

Figure 10. Longitudinal cross section of ore pass system.
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section concentration 

stooy point stope stope 

| O O 

production drifts 

concentraition 

points 

dumping points 

Y 

sublevel drift Y Y 4 

sublevel | -th 

Y M Y 

• • ... 0 sublevel/-th 

Figure 11. Horizontal cross-section of ore pass system on sublevel. 

Since the concentration point and dumping point are neighboring points, a potential 

set of ore pass locations is then equal to a set of concentration points. According to the 

terminology of location-allocation methodology, ore passes are candidate points. The 

location of ore passes on the candidate sites and the assignment of mined ore to each 

located ore pass are determined such that the total cost is minimized. The total cost is 

the sum of the transportation costs and costs of ore pass excavation (development). An 

ore pass is usually excavated via the drill and blast method. A graph of the ore pass 

location-allocation problem is shown in Figure 12. 

Sublevel /e[1,L] 

Time period fe{[1,7] 

section concentration point orepass J 

1 1 

2 2 

3 3 

m n 

Figure 12. A graph of the ore passes optimization problem. 

The optimization problem can be presented by a graph denoted as G (V, E), where V 

is a finite set of vertices, and E is a finite set of edges. Set V consists of ore pass candidate 

points, while set E consists of haulage drift sections. Vertices are weighted by ore pass 

development costs, and edges are weighted by ore transportation costs. The problem is to
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find a subset K C V of ore passes as to minimize the total cost. The outcome of the problem 

is the number of selected ore passes as well as their locations and ore tonnage assignment 

plan over time. 

According]ly, the fuzzy objective function, which is aimed at minimizing the total cost 

of the ore pass system, is as follows: 

~ m n T L ~ M ~ 

F-))J). ) i cidijaaXijaa + }_ Cjxj — min, (27) 
i=1 j=1 =1I=1 j=1 

subject to: 

) ažijaı = 1,Vj e [1,n},Vt e [1, T},VI e [1, L], (28) 

xij — Xja <0,Vi c |1,m},Vj c |1,n},Vt c |1,T},VI c [1,L], (29) 

) ixijaaaı - ažija < 0,Vi e |[1,m},Vj e |1,n},VI e |1,L – 1}, (30) 

xijal + i ı S L,Vi e |1,m},i = j,vs e [1, S},Vt e [1, T],V! e [1, L], (31) 

Xij + xf]- < 1,Vi c |1,m}],i = j,Vs c [1,S], (32) 

xij — *j < 0,Vi e |[1,ml,i = j,vt e [1,T},VI e [1, L], (33) 

Xijt ıe [0,1];x]· c [0,1]. (34) 

where the following, are defined: 

m—total number of section concentration points; 

n—total number of ore pass candidate points; 

Ti+, —tonnage of ore which gravitates to the i-th section concentration point on the I-th 

sublevel in time t; 

Žt—fuzzy unit transportation costs in time t; 

dij, ——distance between the i-th section concentration point and the j-th candidate 

point on the I-th sublevel in time t; 

L—total number of sublevels; 

T— mining time; 

S—a set of candidate points that do not meet the safe distance condition relative to 

j-th candidate point; 

Cj—fuzzy cost of ore passes excavation (development); 

Xij, ——binary variable; 

x i–binary variable. 

In underground mining practice, ore pass excavation is called ore pass development. 

Ore pass development through the rock massive is accomplished via drilling and blasting,. 

Information on rock mass properties is gathered by surface exploration drilling, with 

sampling. A wide-space grid pattern of drilling and testing of the rock core samples is 

used, and information on rock mass characteristics between bore holes is gathered by 

interpolation. Hence, we cannot define the properties of rock mass at a micro-location, 

where the ore pass should be developed, with high level precision. It may be that the 

full length of the ore pass, or some sections, must be supported by rebar and liners, such 

as shotcrete. It is a source of uncertainties, and triangular fuzzy numbers are a very 

convenient way to quantify cost uncertainties. Transportation equipment operating; costs 

are also burdened with uncertainties, due to adjustments in inputs such as labor, fuel, 

lubricants, tires and spare parts. The market price of these inputs is explicitly defined by
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l,ifdjjynyı <D— scS,Vje [1,n},Vh c |1,2,...,n — j),Vt e [1, T},VI c |1,L], 

0,ifdjjanaı > D — s & S,Vj e [1,n},Vh e |1,2,...,n — j},Vt e |1, T),VI e |1,L]. 

the business strateg;y of suppliers. To protect themselves, suppliers are offering short-term 

contracts to mines, which is in contrast to traditional long-term contracts. This is one of the 

reasons why we use triangular fuzzy numbers to express ore transportation costs. 

In some cases, alternative fuzzy set types, such as Interval Type-2 Fuzzy Sets (IT2FS), 

may be required to capture more complex or higher-order uncertainty patterns. The choice 

of fuzzy set type depends on the specific characteristics of the uncertainty being modeled 

and the requirements of the application at hand. But, in this case study, TFNs have shown 

stable and rational results. 

We have implemented TFNs in this study due to several reasons: 

• TFNs are useful when data availability is limited or uncertain, which is the case in this 

study. In this study, obtaining, precise data for uncertainty modeling, was challenging, 

and TFNs enable experts to represent and reason about uncertainty based on their 

knowledge, experience or imprecise data. 

• TENs are computationally efficient compared to more complex fuzzy set types such 

as interval type-2 fuzzy sets. The calculations involving, TFNs are less demanding in 

terms of computational resources. This efficiency facilitates quicker linear program- 

ming and decision-making processes. 

•  One of the contributions of this study is the proposal of a new methodology for 

the defuzzification of fuzzy numbers. To present the mentioned idea, the authors 

decided to apply TFNs. This paper presents a novel approach for the defuzzification 

of TFNs using the Torricelli-Simpson ranking function. In the following, research, 

the author”s intention is to show the possibilities of applying, the Torricelli-Simpson 

ranking function for the defuzzification of trapezoidal fuzzy numbers and other types 

of uncertainty. 

•  OQurintention is to develop a decision support system based on the developed method- 

ology. To achieve this goal, we need a stable system with easily integrated parts. 

TFNs can be easily integrated into real-world decision support systems and processes. 
They can be used alongside traditional crisp or deterministic values, providing, a 

seamless transition from conventional methods to fuzzy-based approaches without 

major disruptions. 

The objective function (27) of the ore pass system model minimizes the total costs, 

including the ore transportation costs from a stope to an ore pass and the fixed costs of ore 

pass excavation. Equation (28) implies that total ore tonnage must be transported from a 

stope (section concentration point) to one ore pass only. Constraint (29) and constraint (30) 

do not allow discontinuity or segmentation of the ore pass. 

The continuity of the ore pass must be achieved, from the first sublevel to the main 

haulage level. 

Constraints (31), (32) and (33) relate to the pillar thickness between two operating, ore 

passes. We named this thickness as safety distance D. The aim of this constraint is to select 

locations of ore passes with no stress interaction between them. Having created numerical 

stress modeling, Bunker et al. showed the mechanism of stress interaction (see Figure 13) 

and proposed a minimum safety distance of 30 m [32]. 

Members of set S are defined in the following, way: 

(35) 

Constraint (34) strictly supports the following, statements: 

• Ifvariable y takes a value of 1, then the ore is transported from i-th section concen- 

tration point to the j-th ore pass on the I-th sublevel in time f, otherwise 0; 

•  Ifthe orepassis excavated in location J, then variable Xj takes a value of 1, otherwise 0. 

Figure 14 shows a flowchart of the ore passes optimization model.
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Figure 13. Vertical raise interaction (left) and deviatoric (right) stress results. 

Fuzzy objective function of ore passes system: 

m T L n 

F-Y 9 ) nučdyam+2.0% , m 
i=1 j=1 t=1 I=1 j=1 

Deffuzification of fuzzy objective function of ore passes 
system by the novel Torricelli-Simpson ranking function J 

n 

(TSRF) method: 
L m n T n 

753330 I O 
j= i=1 j=1 t=1 I=1 

ıL 
Creation a set of techno-dynamic constraints 

Žm XJ= L,vj e [1,n},vt e [1,7],vi e [1,L] i-i 

XJ _X =0,Vi e [1,ml,vj e [1,n], vt e [1,7],vi e [1,L] 

Ž. 
X +XBua s L,vi e [1,ml,i = j,vs e [1,S],vt e [1,7], vi e [1,L] 

- 
_— 2, us O,vie[u,m},vj e [,a}vte [,L—1} 

xj+x} s1,vie[1,ml,i =j,vs e [1,5] 

Xia— x S0,Vi e[1,ml,i = j,vt e [1,7],vI e [1,L] 

X e [0,1]; x, e [0,1] 

4 
Optimal solution of ore passes system: 

optimal number of ore passes 

optimal location of ore passes 

optimal dynamic ore transportation plan 

Figure 14. Flowchart of the ore passes optimization model. 

4. Numerical Example 

To evaluate the developed optimization model, we used a hypothetical cooper deposit. 

The sublevel mining, method was selected as a means of underground mining, with the 

following, design parameters and ore characteristics: 

•  Numberofsublevels which was analyzed, 3 sublevels; 

• Sublevelheight,15 m;
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Stope width, 10 m; 

Stope height, 15 m; 
Ore pass length, 44 m; 

Ore pass is vertical; 

Cross-section of ore pass is circular, with diameter of 2 m; 

Number of stopes on each sublevel, 20 stopes; 
Total number of stopes, 60 stopes; 

Ore density, 2.65 t/mŠ. 

The hypothetical cooper deposit and sublevel mining, method are presented in Figure 15. 

SURFACE 

/_j_p\ 
CROSS-SECTION A-A ___ 

-, Hanging wall 

Stope 

~ | 
Production drift __ Sub/level drift A 

Y Y e o o o 
A A 

/ / Orepass 
__ __ i! i < Dumping point ap Sublevel drift\,\ Unloading drifts OREBODY 7—- Unloading drift Orgpasses nloading drifts 

; O p Sublevel 1 o roduetion drifts Main haulage level 
_ LHD maneuver drift o Concentration point , e Dumping point 

Figure 15. Ore deposit and schematic design of sublevel development. 

The sublevel's mining plan is presented in Figure 16 and Table 1. On each sublevel, 

there are twenty stopes, and each stope is divided into three sections. Colored sections 
represent the sequencing of the stope with respect to yearly time horizon. The mining plan 
spans three years for a total production of 882,848 t of ore. 

_ 
I Subleve12 

Sublevel 1 
Coveml OdYem_? JWWWYear3 [ lYeari |-0yYear? |BYearı 

Sublevel 3 

| Yearl |dYear? |BYear3 

Figure 16. Mining, plan on each sublevel.
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Table 1. Mining; plan on sublevels. 

Sublevel 1 Sublevel 2 Sublevel 3 

Year1 Year 2 Year 3 Year1 Year 2 Year 3 Year1 Year 2 Year 3 

(0) (t) (t) (t) (t) (0) (t) (t) (0) 

5605 5247 5804 8030 5247 3419 5247 3021 3697 
6201 5247 6201 7115 5247 3379 5048 3419 3061 

6758 5247 5645 5645 5247 3061 4889 3816 2663 
7314 5207 6002 4055 5247 3737 4850 4253 2783 
7354 5207 6917 2504 5247 4730 457 4651 3419 

6519 5287 7791 2266 5247 5684 3856 5128 4214 

6678 5525 7314 4015 5565 5645 3498 5525 4571 
7235 5525 6440 6797 5486 4770 4134 5446 4412 

7592 5525 5963 6917 5486 4770 3816 5168 5804 
6917 5366 5247 6758 5724 4850 298 5088 6440 
5366 4810 4333 5366 6082 4691 3339 5048 5168 
4174 4214 4214 4611 6440 4333 4094 4929 3816 

3538 3657 4134 5446 6758 3975 469 4810 3101 
3776 3935 3419 7354 5645 4015 5724 4333 3061 
3657 5088 3101 8626 4253 4214 6400 3339 4015 
4889 5207 3896 7910 4850 3935 4015 4253 5605 
5605 5287 6042 4889 5207 4214 2942 5128 6042 

5287 5287 7831 2703 4770 5168 3697 4571 5963 
4214 5287 8467 2544 4333 5406 4134 3935 4174 

1630 3896 8069 2703 3856 3339 994 3299 2067 
Total 110,306 100,051 116,825 106,252 105,934 87,331 82,919 89,159 84,071 

Summary mining plan is shown in Table 2 and Figure 17. 

Table 2. Summary mining;, plan. 

Year/Sublevel Year 1 (t) Year 2 (t) Year 3 (t) 

Sublevel 1 110,306 100,051 116,825 
Sublevel 2 106,252 105,934 87,331 
Sublevel 3 82,919 89,159 84,071 

Total 299,477 295,144 288,227 

to
ns
/y
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r 
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Year1 

mSublevel1 mSublevel? 
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Figure 17. Summary mining plan. 

Sublevel 3 

Year3 

Since production activities are planned, we can create a graph that represents the 

ore pass system optimization problem. The numbering , system which defines the section 

concentration points (SCP) in ascending order, on each sublevel, is as follows: 

Sublevel 1: SCP 1 is located 54 m from the sublevel drift (upper-right corner). SCP 21 

and SCP 41 are located 36 m and 16 m from the sublevel drift, respectively (see 

Figure 18);
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• Sublevel2: SCP 61 is located 58 m from the sublevel drift (upper-right corner). SCP 81 

and SCP 101 are located 36 m and 21 m from the sublevel drift, respectively (see 

Figure 19); 

• Sublevel3: SCP 121 is located 54 m from the sublevel drift (upper-right corner). 

SCP 141 and SCP 161 are located 40 m and 19 m from the sublevel drift, respectively 

(see Figure 20). 

oooo T– 

e•ee.•.•.. 
20 19 18 17 16 15 14 13 12 

Sublevel 1 

o Yearl e Year2 e Year3 

o Concentration point , e Candidate point 

Figure 18. Disposition of characteristic points on sublevel 1. 

••••••••T_J••••••••••"V 
10m 

20 19 I8 17 16 15 14 13 I2 I IO 9 87 65435321 
Sublevel 2, 

o Yearl e Year2 e j Year3 

o Concentration point . • Candidate point 

Figure 19. Disposition of characteristic points on sublevel 2. 

— — — —— ——— _— —— — — — — — ——— —a 1 ! L_ um 
eee e eeee•e•.e•••••. e •O .•..• .• 

20 19 18 I7 16 15 14 13 I2 I1 IO 9 8 765432 
Sublevel 3 

c Year 1 e Year2 e Year3 

e Concentration point . • Candidate point 

Figure 20. Disposition of characteristic points on sublevel 3.



Mathematics 2023, 11, 2914 20 of 35 

Accordingly, on each sublevel, there are 60 section concentration points, and in total, 

there are 180 section concentration points. The location of each SCP is defined by the 

perpendicular distance from the sublevel drift (see Table 3). 

Table 3. Distance between section concentration point and concentration point. 

Concentration Sublevel 1 Sublevel 2 Sublevel 3 

Point Year1 Year 2 Year 3 Year1 Year 2 Year 3 Year1 Year 2 Year 3 

(m) (m) (m) (m) (m) (m) (m) (m) (m) 

1 54 36 16 58 36 21 54 40 29 
2 58 39 19 59 38 23 56 41 30 

3 61 41 22 58 40 26 57 43 32 
4 65 43 24 58 43 27 59 44 33 

5 68 46 25 58 45 28 62 47 33 
6 68 48 27 60 48 29 63 49 32 

7 68 47 25 62 46 27 62 46 30 
8 65 42 22 63 43 25 59 42 26 

9 60 37 8 63 41 24 58 43 25 
10 54 33 5 61 41 24 59 46 26 

11 50 33 7 60 42 23 58 45 28 
12 46 32 8 62 41 24 59 44 29 
13 43 31 9 65 42 24 59 43 30 

14 44 31 9 62 40 25 58 40 28 
15 47 33 20 61 40 26 53 37 24 

16 52 35 9 54 39 23 50 36 21 
17 56 38 6 49 38 21 51 38 19 
18 56 39 6 48 37 21 51 37 20 

19 54 40 6 47 37 21 50 37 24 
20 53 40 5 47 37 25 45 37 28 

The numbering system which defines ore passes or candidate points is directed from 

right to left, in ascending, order (see Figures 18-20). The distance between concentration 

points is 10 m, and the distance between the concentration and candidate point is 10 m. The 

distance between the SCP and candidate point is calculated by summing up all the sections 

along, the way from the SCP to the candidate point. The following, example shows the 

method of calculating the distance between SCP 10 and candidate point 5 (see Figure 21). 

10 
ıi 

5
4
m
 

Figure 21. Partial distances between SCP 10 and candidate point 5. 

The distance between SCP 10 and candidate point 5 on sublevel 1 in year 1 equals: 

di-q,j-54-ıJ—ı — 54 + 50 + 10 = 114 m, (36)
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The same approach is used to calculate all distances that exist between the set of section 

concentration points and set of candidate points. If we take into consideration the presence 

of m = 180 section concentration points and n = 20 candidate points, then 3600 distances 

exist. Obviously, Figure 20 presents the directed graph of the selected example, which 

describes only geometrical elements of the optimization problem. To obtain a weighted 

graph, it is necessary to assign costs to edges and vertices. For that purpose, the data set 

concerning costs is given in Table 4 and in Figures 22 and 23. 

Table 4. Cost data. 

Cost 
Value 

Transportation Unit Cost 

Year 1 (0.047 0.049 0.058) USD/t m 
Year2 (0.051 0.057 0.062) USD/tm 

Year 3 (0.048 0.052 0.061) USD/tm 
Ore pass excavation unit cost (2270 2550 2750) USD/m 

Ore pass length 44m 

1 
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0.8 

o 07 
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5 04 

E 03 

0.2 

0.1 

[ 
0.04 0.045 0.05 0.055 0.06 0.065 

USD/tm 

Year1l Year2 Year3 

Figure 22. Fuzzy transportation unit cost scenario over time. 
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Figure 23. Fuzzy unit cost of ore pass excavation (development). 

The combination of SCP 10 and candidate point 5 is also used as an example of the 

fuzzy coefficient calculation of variable y;_y0,j=s,=i =1· The value of the fuzzy coefficient 

fori=10,j=5,t=1,1=1 equals: 

riy Čidijaı = 6917 x (0.047 0.049 0.058) x 114 = (37,059 38,636 457,32)USD, · (37)
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The fuzzy coefficient of variable xs equals: 

Cs = 44 x (2270 2550 2750) = (99,880 112,200 121,000)USD, (38) 

Equation (37) represents the transportation cost component, while Equation (38) 

represents the development cost component of the fuzzy objective function. The same 

calculation is used to define all coefficients in the fuzzy objective function. To solve the 

problem of ore pass system optimization, it is necessary to transform the objective function 

from the fuzzy state to the crisp one. 

The transportation cost component, which is expressed by triangular fuzzy number 

;X = (37,059 38, 636 45, 732), is used for the presentation of the developed defuzzification 

method. Applying Equation (6), we obtain normalized triangular fuzzy number as follows. 

37,059 _ 
N /37,059? +38,6362 +45,7322 0526, HiaN)—0 

P _ 3+1 

AN = +N /37,059? +38,636? +45,7322 0.5448, H(bN)=1+"X, (39) 

N 3 0.649, wM(cN)=0 
4//37,059? +38,636? +45,7322 

The value of the fuzzy coefficient for i = 10, j = 5, t = 1 and] = 1, and its normalized 

form is shown in Figure 24. 

09 

08 ? 

07 

e 
= 06 15 

B 0.5 >= 

š oa ı FI 
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0.2 0.5 

0.1 

o o 
34,000 _ 36,000  38,000 ~ 40,000  42,000  44,000 ~ 46,000 ~ 48,000 0.45 0.5 0.55 0.6 0.65 07 

USD x 

Figure 24. The value of fuzzy coefficient and its normalized form expressed by triangular 

fuzzy numbers. 

According to Figure 4, the coordinates of vertices of the normalized triangular fuzzy 

number are: Vi(0.526;0), V-(0.548;2.333) and Va(0.649;0). The gradient of the line ,, which 

passes through the vertex Vi, and its equation are given as follows: 

2.333 
a tan(60 } arctan(l0-548i0-526l)) 0.5902, (40) 

biy=Sı(x-aN) 0.5902·(x — 0.526), (41) 

The gradient of the line Il», which passes through the vertex Vo, and its equation are: 

.548 — 0.52\ 
g tan(30 arctan(l05 333(3)5 6')) 0.5646, (42) 

l> : y = ga(x — by) + 2.333 = 0.5646-(x — 0.548) + 2.333, (43)
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The coordinates of the vertex, which lies at the intersection of lines l} and I», are 

Va(—1.483;1.186). So, the equation of the Simpson line sa, which passes through vertices Va 

and Vy, is as follows: 

sa : y = —0.5561·(x + 1.483) + 1.186, (44) 

The equations of lines l3 and la, which pass through vertices Vi and Vy, respectively, 

are as follows: 

b :y= —V3(x — aN) V3{(x — 0.526), (45) 

l :y = V3(x – cN) = V3(x — 0.649), (46) 

The coordinates of the vertex, which lies at the intersection of lines 13 and l, are 

'Ve(0.587; —0.106). According}ly, the equation of the Simpson line s», which passes through 

vertices Ve and Vo, is: 

2.333 — V3{ NEN _ 
.y ( ž ) x_ NN | } Va{0N_ N 62.2578-(x — 0.587) — 0.106, (47) buy — GdNT+CN 2 2 

N_ —. 

The solution of the system of Equations (44) and (47) presents the x-coordinate of 

the Torricelli point of the normalized triangular fuzzy number A = (0.526 0.548 0.649), 

TN = 0.585. 

The crisp value of the original triangular fuzzy number 4 = (37, 059 38, 636 45, 732) 

based on the Torricelli-Simpson ranking, function (TSRF) is as follows: 

TSRF (Ž\) = TN: Va? + b? + c? = 0.585. /37,059? + 38,636? + 45,7322? = 41,235 USD, (48) 

The intersection between the Simpson line s> : y 62.2578·(x — 0.587) — 0.106 and 

the x-axis defines a point with the following, x coordinate, SN = 0.586. Now, the crisp value 

of AN = (0.526 0.548 0.649) based on the Simpson ranking function (SRF) is: 

SRF(Ž\) = SN:Va? + b? + c? = 0.586· /37,059? + 38,636? + 45,732? = 41,275 USD, (49) 

Applying, either the TSRF or SRF approach, we obtain crisp values of each coefficient, 

which are represented by variables xy;jj,, and yj, respectively. Through this method, the 

original fuzzy objective function is transformed into a crisp one, and it can be solved by 

using any standard linear programming, methods. 

The validation of the developed method was carried out on the example that we 

borrowed from Garrido et al. [33]. The example considered the problem of economic 

benefit maximization generated by tourists with respect to several socio-environmental 

constraints. The results are shown in Table 5. 

Table 5. Validation of proposed methodology. 

Ranking Function 'Ci=(190,210,230)) 'C2=(140,160,180) 'ca=(45,60,80) 

Center of gravity 210 160 61.66 
Yager's F1 210 160 61.67 
Yager's F3 210 160 61.25 
Adamo 220 170 70 

Campos 216.67 113.33 45 
Gonzales 209.57 160 61.67 

TSRF 210 160 62.14 

SRF 210 160 62.23 

To assess the stability of the presented defuzzification techniques (TSRF and SRP), the 

change in parameters of the fuzzy number Žl = (190,210,230) was simulated. Since it is
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a symmetric fuzzy number where the deviation of the left and right boundaries from the 

modal value is equal, the defuzzified number is expected to be close to the modal value. 

Therefore, in the following part, the change in left, modal and right parameters is simulated 

to generate non-symmetrical parameters of the triangular fuzzy number. The simulation 

involved ten thousand iterations and was carried out through two phases: 

1.  Inthe first phase, a simulated change was performed in the right boundary of the 

fuzzy number Ž1 = (190,210,230), while the left boundary and the modal value 

remained unchanged. The right border is increased by one in each iteration, so in the 

last iteration, the right border is increased by ten thousand. 

2.  Inthe second phase, the change in all three parameters of the fuzzy number E1 was 

simulated as follows: the left value was increased by one in each iteration, the modal 

value was increased by two times, and the right value was increased by six times in 

each iteration compared to the previous iteration. 

The results obtained in the first and second phases of the simulation were compared 

using the COG defuzzification technique. Figure 25 compares the defuzzification techniques 

TSRE, SRF and COG during the first and second phases of the simulation (Figure 25a,b). 
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Figure 25. Comparison of defuzzification techniques TSRF, SRF and COG. 

To see the deviation more clearly, the percentage deviation of the considered defuzzi- 

fication techniques' results was monitored, as shown in Figure 26. As a reference value
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concerning how the deviation was determined, the defuzzified values obtained by applying; 

COG were taken. 
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Figure 26. Deviation of TSRF and SRF results from COG. 

The presented results in Figures 25 and 26 show that the TSRF and SRF provide stable 

results regardless of whether they are symmetric or non-symmetric fuzzy numbers. 

We applied the TSRF method to transform the fuzzy objective function of the follow- 

ing form: 

minf = (16,859 17,576 20,805)xij ı + (19,493 20,323 24,056)xi,i,ı + ... + (4762 5159 6052) Xa2oi9,3,3 (50) 

+{3770 4084 4791) x2ozo,3,3 + (99,880 112,200 121,000)xi + ... + (99,880 112,200 121,000)x2o 

to a crisp objective function: 

minf = TSRF(E) XijAJ 
= 18,759xiı ı + 21,689xui,1,ı + ... + 5391Xo0ouio,3,3 + 4267Xoogo,3,3 + 11,0531xi + ... + 110,531xXoD 

(51) 

The pillar thickness between two operating, ore passes, or the distance between candi- 

date points, is depicted in Table 6.
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Table 6. Distance between candidate points (m). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 10 20 3 4 5 6 7 7” 8 90 100 110 120 130 140 150 160 170 180 190 

2 0 10 20 3 4 5 8 6 7”  S 90 100 110 120 130 140 150 160 170 180 
3 0 10 20 3' 4 5[ 6 7” ” 8 90 100 110 120 130 140 150 160 170 

4 0 10 20 3 4 5 e 7” 8 9 100 110 120 130 140 150 160 
5 0 10 20 3 4 5 6” 57R 7 8 ”TR“ =ć5&i90 100 110 120 130 140 150 
6 0 10 20 3 4 5 Ć] 60 7 / T7R!] 80 90 100 110 120 130 140 

7 0 10 20 3 4 5 R 6b 5p 7 8 9 100 110 120 130 

8 0 10 20 3 4 5YRX 6 7”R"RđĆČ 80 90 100 110 120 
9 0 10 20 3 4 5 6 Y=ćR. 7 8 9 100 110 

10 0 10 20 3 4 5 6 7 8 90 100 
11 0 10 20 3 4 5 6 R«« 7 R'n"qpŽ 8 90 

12 0 10 20 3 4 5%S 6 7R R 80 
13 0 10 20 3 4 5%;5”wB? e 70 

14 0 10 20 3 4 5S”YqRm 60 
15 0 10 20 3 4 5 
16 0 10 2 93 40 

17 0 10 20 30 

18 0 10 20 
19 0 10 
20 0 

According to the safety distance D = 30 m, Table 7 presents a safety matrix composed 

of ones and zeros. One (1) is assigned to an ore pass that does not meet the condition 

defined by Equation (35), otherwise zero (0). 

Table 7. Safety matrix. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
8 0 1 1 0 0 0 0 0 0 0 0 0 0 

9 0 1 1 0 0 0 0 0 0 0 0 0 
10 0 1 1 0 0 0 0 0 0 0 0 

11 0 1 1 0 0 0 0 0 0 0 
12 0 1 1 0 0 0 0 0 0 

13 0 1 1 0 0 0 0 0 
14 0 1 1 0 0 0 0 
15 0 1 1 0 0 0 

16 0 1 1 0 0 
17 0 1 1 0 

18 0 1 1 
19 0 1 

20 0 

The model is composed of 3620 variables and 5130 constraints, excluding, binary 

constraints. The model is solved using, Open Solver software [34]. The model selected 

candidate points (ore passes) , 5, Xio, X15 and Xqig as a solution to the problem. The value 

ofthe objective function is USD 3,444,102, with an ore transportation cost component of USD 

2,891,447 and an ore pass development cost component of USD 552,655. Also, the model 

created a unique dynamic ore transportation plan, which is depicted in Figures 27—-29.
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o Year 1 o Year2 e Year3 

Figure 27. Ore transportation plan forf =1 and1=1. 

š š 
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Figure 28. Ore transportation plan for f =2 and | = 2. 

Sublevel 3 

o Year | e Year2 e jYear3 

Figure 29. Ore transportation plan for f = 3 and | =3. 

The result of the dynamic ore transportation plan is explained in Table 8. 
The distribution of ore tonnage by selected ore passes, for a mining, period of three 

years, is shown in Figure 30.
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The distribution of ore tonnage by selected ore passes with respect to time and sub- 
levels is presented in Figures 31—33. 

Table 8. Yearly sublevel ore transportation plan. 

Year „Sublevel „Ore Pass x2 (tons) Ore Pass x5 (tons) . Ore Pass x10 (tons)  Ore Pass x15 (tons) | Ore Pass x18 (tons) 

1 18,563 27,865 31,283 15,860 16,735 
1 2 20,789 2,839 30,449 29,336 12,839 

3 15,185 6,775 18,365 20,829 11,766 
1 15,741 21,227 25,440 17,888 19,756 

2 2 15,741 21,306 29,216 21,505 18,166 

3 10,256 9,557 25,679 16,735 16,934 
1 17,649 28,024 26,195 14,549 30,409 

3 2 9858 9,796 23,413 16,139 18,126 
3 9421 4,986 25,639 15,781 18,245 

162,975 133,202 18% 15% 

182,373 
168,620 19% 

235,678 27% 

w Orepass2  Orepass5 » Ore pass 10 » Ore pass15 » Ore pass 18 w Orepass2 = Orepass5 = Ore pass10 = Orepass15 = Ore pass 18 

Figure 30. The distribution of ore tonnagee by selected ore passes. 

Year 1-Sublevel 1 Year 1-Sublevel 1 

16,735 18,563 15% 17% 

m Ore pass 2 m= Ore pass 2 

w Ore pass 5 w Ore pass 5 
15,860 15% 

w Ore pass 10 w Ore pass 10 

27,865 ” Ore pass 15 25% w Ore pass 15 

w Ore pass 18 w Ore pass 18 

31,283 28% 

Year 1-Sublevel 2 Year 1-Sublevel 2 

12,839 20,789 12% 19% 

m Ore pass 2 m Ore pass 2 

m Orepass5 m Ore pass 5 

29,336 4 12,839 ” Ore pass 10 28% 4 12% P Orepass10 
w Ore pass 15 w Ore pass 15 

m Ore pass 18 m Ore pass 18 

30,449 29% 

Year 1-Sublevel 3 Year 1-Sublevel 3 

11,766 15,185 14% 19% 

m Ore pass 2 m Ore pass 2 

w Ore pass 5 w Ore pass 5 

20,829 w Ore pass 10 25% w Ore pass 10 

i 16,75 »= ore pass 15 20% m Ore pass 15 

w Ore pass 18 w Ore pass 18 

18,365 22% 

Figure 31. The distribution of ore tonnage by ore passes through sublevels for year 1.
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Year 2-Sublevel 1 Year 2-Sublevel 1 

19,756 15,741 20% 16% 

w= Ore pass 2 m Ore pass 2 

w= Ore pass 5 w Ore pass 5 

21,227 " Ore pass 10 21% _ " Orepass10 

17,888 w Ore pass 15 18% w Ore pass 15 

w Ore pass 18 w Ore pass 18 

25,440 25% 

Year 2-Sublevel 2 Year 2-Sublevel 2 

18,166 15,741 17% 15% 

m Orepass2 m Ore pass 2 

w Ore pass 5 w Ore pass 5 

21,306 » OOre pass10 20% » OOrepass10 
21,505 20% 

w Ore pass 15 w Ore pass 15 

w Ore pass 18 w Ore pass 18 

29,216 28% 

Year 2-Sublevel 3 Year 2-Sublevel 3 

16,934 10,256 19% 11% 

m Ore pass 2 m Ore pass 2 

w Ore pass 5 w Ore pass 5 
19,557 22% 

w Ore pass 10 w Ore pass 10 

16,735 m Ore pass 15 19% w Ore pass 15 

m Ore pass 18 m Ore pass 18 

25,679 29% 

Figure 32. The distribution of ore tonnage by ore passes through sublevels for year 2. 
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w Ore pass 15 w Ore pass 15 

14,549 m Ore pass 18 13% m Ore pass 18 
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11' 
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m Ore pass 2 m Ore pass 2 
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w Ore pass 10 w Ore pass 10 
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w Ore pass 18 w Ore pass 18 
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9,421 11% 
18,245 22% 

m Ore pass 2 mOrepass2 
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m Ore pass 10 m Ore pass 10 

15,781 p Ore pass 15 19% m Ore pass 15 

m Ore pass 18 m Ore pass 18 
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Figure 33. The distribution of ore tonnage by ore passes through sublevels for year 3.
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As we mentioned above, total transportation costs are USD 2,891,447, and the time 

distribution of costs is depicted in Figure 34. 

1,400,000 
1,210,092 

1,200,000 - 

1,009,692 
1,000,000 - 

800,000 - 671,663 

600,000 - US
D 

400,000 j 

200,000 | 

0 

Year1 Year2 Year 3 

Figure 34. Transportation costs on yearly time resolution. 

5. Sensitivity Analysis of the Model 

The model produced a solution with following, properties: 

Selected ore passes are x, xs, Xio, X1i5 and Xig; 

Value of objective function is USD 3,444,102; 

Value of ore transportation costs is USD 2,891,447; 

Value of ore pass development costs is USD 552,655; 
Ratio between transportation and development costs is 5.23. 

Obviously, the component of the objective function relating, to the ore transportation 

costs has the greatest influence on the solution, followed by the ore pass development costs. 

So, the sensitivity analysis is based on changes in the coefficients of the objective function, 

which present the unit transportation costs (see Table 9). 

Table 9. Magnitude of changes in unit transportation costs. 

Magnitude of Change Unit Transportation Cost Unit Transportation Cost Unit Transportation Cost 

(%) Year 1, (UOSD/tm) Year 2, (OSD/tm) Year 3, (OSD/tm) 

—50 0.024 0.025 0.029 0.026 0.029 0.031 0.024 0.026 0.031 

-45 0.026 0.027 0.032 0.028 0.031 0.034 0.026 0.029 0.034 

-40 0.028 0.029 0.035 0.03 0.034 0.037 0.029 0.031 0.037 

—35 0.031 0.032 0.038 0.033 0.037 0.040 0.031 0.034 0.040 

—30 0.033 0.034 0.041 0.036 0.040 0.043 0.034 0.036 0.043 

-25 0.035 0.037 0.044 0.038 0.043 0.047 0.036 0.039 0.046 

—20 0.038 0.039 0.046 0.04 0.046 0.050 0.038 0.042 0.049 
—15 0.040 0.042 0.049 0.043 0.048 0.053 0.041 0.044 0.052 

—10 0.042 0.044 0.052 0.046 0.051 0.056 0.043 0.047 0.055 

-5 0.045 0.047 0.055 0.048 0.054 0.059 0.046 0.049 0.058 

0 0.047 0.049 0.058 0.05 0.057 0.062 0.048 0.052 0.061 

5 0.049 0.051 0.061 0.054 0.060 0.065 0.050 0.055 0.064 

10 0.052 0.054 0.064 0.056 0.063 0.068 0.053 0.057 0.067 

15 0.054 0.056 0.067 0.059 0.066 0.071 0.055 0.060 0.070 

20 0.056 0.059 0.070 0.06 0.068 0.074 0.058 0.062 0.073 

25 0.059 0.061 0.073 0.064 0.071 0.078 0.060 0.065 0.076 

30 0.06 0.064 0.075 0.066 0.074 0.081 0.062 0.068 0.079 

35 0.063 0.066 0.078 0.069 0.077 0.084 0.065 0.070 0.082 

40 0.066 0.069 0.081 0.07 0.080 0.087 0.067 0.073 0.085 

45 0.068 0.071 0.084 0.074 0.083 0.090 0.070 0.075 0.088 

50 0.07 0.074 0.087 0.077 0.086 0.093 0.072 0.078 0.092 

For each change in fuzzy unit transportation costs, we ran the model, and the results 

of the changes are shown in Table 10 and Figure 35. 
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Table 10. Results of the sensitivity analysis. 

Magnitude of Total Costs Transportation Development 
Change (USD) Costs Costs Total Number of Ore Passes 

(%) (USD) (USD) 

—50 1,931,604 1,600,011 331,593 3 
—45 2,087,657 1,645,533 442,124 4 
-40 2,237,250 1,795,126 442,124 4 

—35 2,386,844 1,944,720 442,124 4 

—30 2,536,438 2,094,314 442,124 4 

—25 2,686,032 2,243,908 442,124 4 
—20 2,835,626 2,393,502 442,124 4 

—15 2,985,220 2,543,096 442,124 4 
—10 3,134,814 2,692,690 442,124 4 

_—5 3,284,407 2,842,283 442,124 4 
0 3,444,102 2,891,447 552,655 5 
5 3,589,021 3,036,366 552,655 5 
10 3,736,805 3,184,150 552,655 5 
15 3,868,816 3,316,161 552,655 5 
20 4,020,593 3,357,407 552,655 5 
25 4,161,238 3,608,583 552,655 5 
30 4,297,119 3,633,933 663,186 5 
35 4,431,073 3,767,887 663,186 6 
40 4,570,624 3,907,438 663,186 6 
45 4,710,175 4,046,989 663,186 6 

50 4,849,727 4,186,541 663,186 6 
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5000000 6 

4000000 5 
e 4 
9 3000000 

3 
2000000 

2 

1000000 1 

-— ——————— 00 
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% 

—— Totalcosts —— Number of ore passes 

Figure 35. Number of ore passes vs. costs. 

The results of the sensitivity analysis show the model is stable, and underground mine 

designers can use it for solving this complex problem. 

6. Conclusions 

This paper has demonstrated that an integrated planning tool can provide an especially 

useful support for obtaining the globally optimal result, by considering interaction between 

ore transportation and ore pass design costs, with uncertainty. Fuzzy triangular numbers 

are used to quantify the uncertainties of objective function coefficients. To reduce the 

complexity of the optimization model with uncertainty, we developed a methodology 

which transforms the fuzzy 0-1 linear cost objective function of ore passes into a crisp one. 

This transformation is based on the application of Graph theory and the algorithm of the 

Torricelli point, which lies at the intersection of the Simpson lines. The x-coordinate of the 

Torricelli point is a crisp value of a triangular fuzzy number. We performed a comparison 

with some of the existing, methods and a stability analysis of the proposed methodologyy, 

which showed that the Torricelli-Simpson method is very capable of transforming a fuzzy
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environment into a crisp environment. In the Appendix A section, we showed additional 

benefits of the developed model, which relate to the ranking of special cases of triangular 

fuzzy numbers. 

In essence, the ore passes optimization problem is a location-allocation problem but 
with an added space-time component, according to the nature of sublevel mining, methods. 

From the finite set of potential ore pass locations, the model selects the optimal number 

and optimal locations of ore passes, by minimizing the total costs of ore transportation and 

ore pass development with respect to techno-dynamic constraints. In addition, the model 

also creates an optimal ore transportation plan. The sensitivity analysis, which considered 

the changes in ore transportation costs, showed that model is capable of discovering, an 

equilibrium between them and the total number of ore passes. The main aim of the model is 

to help mine designers to solve such complex problems, which have a significant influence 

on mining, economics. 

The proposed fuzzy linear programming, model extends linear programming to handle 

fuzzy constraints and objectives, but it has certain limitations that should be considered. 

These limitations derive from the basic limitations of fuzzy linear models: 

• The proposed methodology can introduce additional complexity compared to tradi- 

tional linear programming, due to the incorporation of fuzzy variables, fuzzy con- 

straints, and fuzzy objectives. 

• Solving the proposed fuzzy linear programming, model can be computationally de- 

manding, especially for large-scale or complex optimization models. 

• ln the case of expanding the proposed model by introducing, subjective linguistic 

assessments, it can lead to inconsistent or subjective results. This limitation comes 

from the subjective nature of the membership functions and linguistic terms used to 

represent uncertainty in expert judgiments. 

Despite these limitations, the proposed fuzzy linear model remains a valuable tool for 

decision-making, under uncertainty. By carefully considering its limitations and choosing, 

appropriate methodolog;ies, the proposed fuzzy linear model can provide insights into and 

solutions to real-world problems. 

In this study, a novel approach for the defuzzification of TFNs using the Torricelli- 

Simpson ranking function (TSRF) is proposed. Since the proposed model showed stable 

results, future research should be directed toward the implementation of the TSRF for 

the defuzzification of trapezoidal fuzzy numbers. Also, an interesting, direction of future 

research is the consideration of the possibility of applying, the TSRF for reading the footprint 

of uncertainty in information and transforming, TFNs into interval type-2 fuzzy numbers. 

In addition to the mentioned directions of future research, there are also possibilities of 

applying the TSRF for the transformation of interval type-2 fuzzy numbers into crisp values. 

Also, further research will be directed toward developing an integrated model which will 

join the planning, of mining and the planning of ore passes. Such a model must be capable 

of giving the optimal solution for mining planning and ore passes planning, simultaneously. 

According}ly, it is necessary to develop a specific cash flow objective function which should 

be maximized with respect to a set of constraints. 
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Appendix A 

Recall the definition of triangular fuzzy number. 

Definition A1. Let X be a universe set. A fuzzy set A of X is defined by a following membership 

function a A(x) — |0,1], where a A(x),Vx c X, indicates the degree of x in A. 

Definition A2. A fuzzy subset A of universe set X is normal if and only if sup, -x hA(xX) = 1, 

where X is the universe set. 

Definition A3. A fuzzy subset A of universe set X is convex if and only if a a(Bx + (1 — B)y) > 

min(jaA(x),MA(y)),Vx,y c X,VB c [0,1]. 

Definition A4. A fuzzy set A is a triangular fuzzy number if and only if A is normal and convex 

on X. 

According]ly, properties of a triangular fuzzy number are as follows: 

•  H(x)is upper semicontinuous; 

• There are real numbers a, b, c; a < b < c, for which the following holds: u(x) is 

monotonic increasing function on [a,b], monotonic decreasing function on [b,c] and 

HM(x)=1forx=b; 

•  H(x) = 0,outside interval [a,c]. 

A symmetric triangular fuzzy number is defined as: 

0, <a 

5, a<x<b 

y;\(x): =—, b<x<c , (A1) 

0, xŽZc 

b-oa=c-b 

To present the additional benefit of the TSRF, we borrowed an example from Sanei- 

fard [35]. Consider the two symmetric triangular fuzzy numbers, A(1,3,5) and B(2,3,4), 

which are shown in Figure A1. Numbers A and B have equal modes but different spreads. 

|} 1 2 3 4 5 6 

x 

—A —B 

Figure A1. Two symmetric triangular fuzzy numbers with equal modes. 

Let Ax be a small increment close to zero. By adding, up Ax to the mode of numbers 

A and B, respectively, we create prerequisites to apply the TSRF for ranking two symmet- 

ric triangular fuzzy numbers, without a loss of generality. For Ax = 0.001, we obtain 

A(1,3.001,5), B(2,3.001,4) and the corresponding, TSRF(4) = 3.000267, TSRF(B) = 3.000161. 

So, the following,  ranking, order of fuzzy numbers is A > B. The ranking index values 

obtained by Saneifard's approach are I(A) = 2.5, I(B) = 2, and the ranking order of fuzzy 

numbers is A > B. The center of gravity of 4 and B equals COG(A) = COG(B) = 3.000333
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and ranking order is A = B. Obviously, the TSRF is capable of ranking symmetric triangular 

fuzzy numbers with equal modes and different spreads. 

The TSRF algorithm is also capable of ranking the symmetric triangular fuzzy numbers 

with equal modes but with different membership functions. If 4A and B are two triangular 

fuzzy numbers, then the following rules are used to rank such kinds of triangular fuzzy 

numbers: 

A> B, ifTSRF(A) > TSRF(B), 
A> B, ifTSRF(A) < TSRF(B),forb — a > c — b, (A2) 
A> B, ifTSRF(A) < TSRF(B),forrb–- a>c-—bAa+b+c<0. 

This ability is demonstrated by the following, special case. Consider two triangular 

fuzzy numbers A = (0.1,0.3,0.5, #(0.3) = 0.8) and B = (0.1,0.3,0.5, (0.3) = 1) [36] (see 
Figure A?). 
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Figure A2. Two symmetric triangular fuzzy numbers with equal modes and different membership 

functions. 

For Ax = 0.001, we obtain A = (0.1,0.301,0.5, (0.301) = 0.8), B = (0.1,0.301,0.5, 

H(0.301) = 1) and the corresponding, TSRF(A) = 0.300267, TSRF(B) = 0.300286. For number 

A and number B, b — a = 0.201, and c — b = 0.199. According to Equation (A2), it follows 

that A < B. A new parametric method developed by Shureshjani and Darehmiraki ranks 

fuzzy numbers A and B in the same way. 
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