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Abstract: Parallel natural languuage processing, systems were previously successfully tested on the 

tasks of part-of-speech tagging, and authorship attribution through mini-language modeling, for 

which they achieved significantly better results than independent methods in the cases of seven 

European languagjes. The aim of this paper is to present the advantages of using, composite language 

models in the processing, and evaluation of texts written in arbitrary highly inflective and morphology- 

rich natural language, particularly Serbian. A perplexity-based dataset, the main asset for the 

methodology assessment, was created using;, a series of generative pre-trained transformers trained 

on different representations of the Serbian language corpus and a set of sentences classified into three 

groups (expert translations, corrupted translations, and machine translations). The paper describes a 

comparative analysis of calculated perplexities in order to measure the classification capability of 

different models on two binary classification tasks. In the course of the experiment, we tested three 

standalone languagjee models (baseline) and two composite language models (which are based on 

perplexities outputted by all three standalone models). The presented results single out a complex 

stacked classifier using, a multitude of features extracted from perplexity vectors as the optimal 

architecture of composite languagje models for both tasks. 

Keywords: languagje modeling; language models; composite structures; machine learning; Serbian 

languagje; text classification 

MSC: 68750 

1. Introduction 

Nearing the end of the twentieth century, the accelerated development of artificial 

intelligence (especially machine learning,  methods) rekindled the idea that good results 

are obtainable in a much faster way and in many engineering spheres, including language 

modeling,. In practice, it was established that one of the biggest disadvantagjes of formal 

grammar (language modeling state-of-the-art at the time) was the high cost of their creation. 

The extraction of grammatical rules from the corpus of texts can, of course, be carried out 

simply by making a list, but this leads to the problem of over-fitting, the model, where 

individual rules are taken for general ones and the broader picture is lost. On the other 

hand, the derivation of general rules from individuals must be carried out carefully and 

requires an enormous amount of time. With new technological developments, however, 

the researchers began to investigate the creation of completely new probability-based 

models, which emulate automata and rule-based grammars. Instead of assigning a Boolean 

response to input strings, these new systems, called language models, assign probabilities 

based on a previously observed textual (training)) corpus (Figure 1). 
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Figure 1. A rough comparison of the functionality of a formal grammar (top) and a language model 

(bottom) for some language L, where S represents a string, and P(ScL) represents the probability 

that S belongs to L. 

SeLJSeL 

Language models are thus defined as systems that assign probabilities to strings (based 

on the context in which they occur), and the models are based on the previously collected 

corpus. Input strings refer to sequences of tokens (w,>...(0), usually representing, 

n-grams of words or characters. 

In the previous couple of decades, language modeling, was developed primarily using, 

artificial neural networks (ANNs), according to the inspiring idea of Elman [1,2], who, 

while experimenting,  with time series as input data for machine learning (ML) models, 

constructed an artificial neural network whose goal was to predict the next element in a se- 

quence. Although the potential of using; ANNs for language modeling, was recognized early 

on, the limitations imposed by this approach caused a stagger in development. A large 

amount of training, data necessary for the correct generalization of grammatical rules, 

as well as satisfactory computing, resources (especially working,; memory and processing, 

power), were not available (at least not to the general public) at the time of the methodol- 

ogy's development. In addition, the problem of the vanishing gradient, a consequence of 

backpropagation when training muhlti-layer and recurrent ANNSs, was observed often in 

practice [3], especially on the task of natural language modeling.. 

Nevertheless, the exponential growth in the PC computing, power that followed, 

as well as the exponential increase in the amount of data available (via the Big: Data 

phenomenon), enabled the theory to finally be technologically supported, triggering a new 

wave of fresh research, based on the idea of deep learning [4], which is currently the most 

represented sub-field of machine learning;, research, and artificial intelligence in general. 

The use of the long short-term memory method (LSTM) [5] in language modeling solved 

the problem of the vanishing, gradient at first glance, while also providing, previously 

unattainable results. 

1.1. State-of-the-Art 

Only with the emergence of the Transformer architecture by Google [6], as an adequate 

alternative to LSTM models, a new step forward was made in the field of natural language 

modeling. The main difference between transformers and LSTM models is that transformers 

do not rely on recurrent structures, but have an improved model for aftention, a special 

parameter propagated during learning, which serves to separate relevant from irrelevant 

information. Today, the most significant and widespread languagjee models are built using, 

this architecture, i.e., an encoder-decoder structure for model training, supported by pre- 

trained word vectorizations (word embedding:s) for preprocessing,.. 

The first outstandingly influential of the type models were BERT (bidirectional encoder 

representations from transformers) by Goog)}e [7] and GPT (generative pre-trained transformer) 

by OpenA! [8,9]. The former is an encoder-based model used primarily for text annotation 

and classification and the latter is a decoder-based model used primarily for language 

generation (prediction of the next token for some given left context). Fast forward to today, 

decoder-based language models are most prominent in the field, with the OpenAI GPT 

models (now in the fourth generation) being especially popular for instruction tuning [10]. 

However, their last model published in open code (and also the latest one available for
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Serbian) is still GPT-2 [11], with the efforts still being: focused mainly on the development 

of encoder-based models both for Serbian [12] and similar Slavic languages [13-16]. 

1.2. Text Quality Evaluation and Perplexity 

With the beginning of the twenty-first century and the emergence of the Big Data 

phenomenon, the necessity to separate significant, quality data from unusable or non- 

quality data became even more apparent. Machine-based classification methods that 

rely on automatically collected attributes such as user ratings or predefined expressions 

(e.g., [17]) are widely used today and represent the basis for web-originated data analysis. 

Classical assessment methods such as evaluation by users or experts tend to be subjec- 

tive, but an adequate alternative still does not exist. Evaluating, the quality of a stimulus 

(irrelevant of its nature) must be subjective because different people perceive it differently. 

The evaluation metrics vary depending on the natural languagjee processing, (NLP) task, 

the phase (the model building, deployment, production phase), the focus (intrinsic and 

extrinsic, ML and business), etc. [18]. The extrinsic metric focuses on evaluating, per- 

formance on the final objective of the concrete NLP task, while the intrinsic focuses on 

intermediary objectives. 

Intrinsic evaluation metrics have the advantage of not relying, on specific tasks or 

reference texts, but rather on the (language) models previously trained on reference texts, 

which are taken as the gold standard. A typical application of intrinsic metrics is to compare 

two models and analyze how likely they are to generate the same text. The most common 

intrinsic metric used in computational linguistics is perplexity, a measure of how much the 

model is surprised by seeing, new input text. Another way to think about perplexity is to 

treat it as the weighfed average branching factor of a language, i.e., the average number of possible 

next words that can follow any word [19]. 

Definition 1. Let CJVI be a language model. Perplexity (PP) of a language model E.M on a 

string of tokens W = wyxw>» ... w (sentence, text) is defined as the inverse probability that a model 

E.M will generate W, normalized by the number of tokens n. Accordinglu, perplexity is calculated 

as follows: 

_1 
PPr,4(W) = Prq(wiwp...(n) () 

where Pro4(0i> ... wp ) is the probability that a model E.VMI will generate W. 1f Le „ı represents 

language generated by model E.M and P is a probability function, then 

Prov4(wiw>...wn) = P(owiw>...wn e LrEMM) (2) 

This implies that the higher the value of perplexity, the poorer the fit of the tested input 

string and the model. If we have text that is taken as a gold standard, we can use perplexity 

as a measure of the quality of a model, or we can measure the quality of the generated text 

if we take a model as the gold standard. In both cases, we Wwant the measure of perplexity 

to be as low as possible. In the worst case, if the model is completely unprepared and the 

probability for each token is the same, then the perplexity is equal to the size of the lexicon 

of tokens. 

The aforementioned properties allow for perplexity to be used for automatically 

distinguishing, between the high- and low-quality data [20], with one of the motives being 

the selection of data used to train new language models [21]. Perplexity can also be used 

for text classification based on language [22], the detection of harmful content [23], and fact 

checking [24]. 

1.3. Research Questions, Aims, Means, and Novelty 

Recent developments in NLP (primarily statistically based language models) have 

brought us numerous new methods and technologies of language modeling [25], with new 

and arguably better language models appearing, every so often. This paper constitutes
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an expansion of prior scholarly investigations dedicated to processing and evaluating, 

exts written in arbitrary highly inflective and morphology-rich natural language, particu- 

arly Serbian. Two prior investigations considering (Serbian) language processing, tasks 

are revisited, specifically, part-of-speech tagging, [26] and literature authorship attribu- 

ion [27] in order to inspect advantagjes of using, composite language models. In these 

papers, several feature combination techniques were tested (e.g.., voting, weighted voting, 

bidding)), but it was concluded that the trained stacked classifier is the optimal method 

of feature combination, with the main advantage of distinguishing between quality and 

noise-inducing features. Additionally, if the trained stacked classifier's complexity is kept 

ow, their explicitness is reasonable and the risk of overfitting, them is minimal. The specific 

aim of this research is to further develop the methodolog;y for the creation of composite 

intelligent systems to aid in solving the task oflanguage modeling, particularly focusing on 

he tasks of perplexity-based text evaluation and classification [20]. The main motivation of 

he experiment was to support the distinction between high-quality and low-quality text, 

particularly that acquired from the web, in order to secure the integrity of automatically 

constructed corpora. 
In order to achieve this goal, a group of standalone transformer-based language models 

(GPT-2), previously trained on a corpus of texts in Serbian [28], were used to develop several 

different composite languagee models. The expediency of the models will be illustrated in 

the example of solving two binary classification tasks: 

[0 Detection of low-quality sentences; 

C, Machine translation detection. 

The first classification task was chosen because of its direct alignment with the goal of 

the research (distinguishing, between high-quality and low-quality text), while the second 

task was chosen as an alternative, which is more difficult benchmark, especially with the 

recent advances in the field of machine translation [29]. The ability of the standalone 

models to classify the sentences will be tested using, only the sentence perplexity value 

outputted by the model. The obtained results will be used as a baseline for the evaluation 

of the composite models. The first of the two envisioned composite models, CM;, will use 

sentence perplexities outputted by each of the three standalone models (M+, M», and Ms, 

Section 2.1) as classification features. Besides the CMi features, the second composite model, 

CM>», will use additional features extracted from standalone models M, M», and Mya. 

This paper will address three research questions: 

RQ1 #jdđre semantic and syntactic models justified tools to use for sentence classification 

tasks, e.g., low-quality sentence or machine translation detection? 

RQ2 #(Cancomposite language models based on outputted perplexities and fthe wisdom 

of crovds-based compositions improve on the accuracy of standalone models on 

classification tasks? 

RQ3 #X“an jfeatures extracted from perplexity vectors be used to further improve the 

classification accuracy of composite models? 

The main contributions of this research are: 

1.  Development ofa perplexity-based dataset for testing and validation of composite and 

standalone languagje models using existing, models and parallel language corpora; 

2. | Development of a detailed model of the composite systems for parallel unification of 

created models (which can be applied to both future models and other languages); 

3. _ Creation of composite Serbian language models that can be used in natural language 

processing tasks, including document classification and text evaluation; 

4. · Evaluation of created models on two well-known binary classification problems. 

The developed composite model architectures are to enable a more precise calculation 

of fitness between models and texts (i.e., a more precise calculation of perplexity) which 

could also induce performance improvement for generative language models. Additionally, 

the knowledge gathered through the inspection of the results should enable researchers to 

further develop the methodology of composite intelligent systems creation. 
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Section 2 of this paper will present the creation of the main evaluation dataset and its 

merits, and Section 3 will describe the process of feature extraction and model compositions. 

Section 4 will present the evaluation process and the results obtained, which will be 

followed by the discussion and concluding, remarks, together with plans for future research 

in Section 5. 

2. Dataset 

The dataset used to evaluate the proposed methodology approach for this experiment 

is envisioned as a series of matrices containing, perplexity values obtained through stan- 

dalone language model evaluation. In order to prepare the dataset, several standalone 

language models (M+i, M», and My) that output different perplexity values for the same text 

were needed, and also several series of textual sentences (7+, T>, and 75) not previously 

used for the training or fine-tuning of Mi, M»>p, and Ma. The final dataset is obtained by 

evaluation of Mi, M»>, and My using T, 7>, and Ty as the test sets. 

The textual dataset T was envisioned as a list of three separate sets: 

Tı High-quality sentences in Serbian, obtained from the expert translation of appraised 

novels written in other languages; 

To Listoflow-quality sentences, i.e., a list of sentences from the dataset Ty corrupted 

using several different methods in order to make them semantically or syntactically 

incorrect; 

T5 _ Listof machine translations of the original literary sentences, as opposed to the expert 

translations from the dataset (T+). 

The final dataset D was generated by recording , the perplexity values of prepared 

language models against the prepared sets of sentences, and it was used to evaluate the 

methodology on both envisioned classification tasks. The detection of low-quality sentences 

(Ci) is summed up as the classification between datasets Ti and T7», and the detection of 

machine translations (C-) as the classification between datasets Ty and 73. The complete 

process of the dataset generation can be summed up in three steps: 

1. _ Preparation of pre-trained languagje models for Serbian that tend to output different 

perplexity measures for textual input (Mi, M>p, and My); 

2. | Preparation of textual data T+, T>, and Ts (based on text not used for the training, or 

fine-tuning, of aforementioned language models), which will be used for the creation 

of evaluation dataset for both classification tasks (Ci and C»); 

3. _ Generation of the final dataset, based on perplexity outputs obtained via evaluation 

of the prepared sentences from the previous step (Tyi, T>, and 75) using prepared 

language models from the first step (Mi, M>, and May). 

2.1. Language Models 

A total of three standalone language models that were previously trained [28] on a 

collected corpus of Serbian texts and based on a second-gjeneration generative pre-trained 

transformers architecture (GPT?, 137 million parameters) were used for this research: 

Mi Contol model trained using, a standard corpus of contemporary Serbian texts 

(1 billion tokens), and standard training, configuration for GPT2-based models; 

M> Experimental semantic model, trained on a specially prepared corpus representation, 

i.e., a corpus processed using latent semantic analysis methods [30], namely removal 

of stop words and lemmatization; 

Ma _ Experimental syntactic model, trained on a different corpus representation that was 

processed using, morphological dictionaries in such a way that the content words [31] 

were replaced with their grammatical category. 

The two experimental models were supposed to model two complementary aspects 

of the text in natural language (semantics and syntax) and therefore produce potentially 

different perplexities when faced with the same piece of input text. It should be noted that 

when calculating, perplexity using, these models, input text must be preprocessed using the
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same transformation that was used for the generation of the training corpus data for the 

respective model in order to obtain correct readings. All three of these models are available 

in open access on the Huggingeface platform and linked in the Data Availability Statement at 

the end of the paper. See Appendix A for the implementation details. 

2.2. Textual Data 

Textual data used to build the evaluation dataset for this research is based on a parallel 

corpus of literary texts (novels originally written in German and Italian and their expert 

translations into the Serbian language). The bigger share of the texts was pooled from 

parallel Serbian-German corpus, SrpNemKor [32], where only the novels originally written 

in German were used. The rest of the textual data represent the parallel translation of the 

third part of the Naples stories series [33,34], prepared as the part of the parallel Serbian- 

Italian corpus within the It-Sr-Ner project (supported by CLARIN ERIC “Bridging Gaps 

Call 2022”) [535]. A total of seven novel translations were used (Table 1). 

Table 1. A list of novels from which evaluation sentences were extracted. 

Author Translator Title Sentences # 

Tomas Bernhard B. Denić Meine Preise 1009 

Elfride Jelinek T. Tropin Die Klavierspielerin 6679 
Milo Dor T. Bekić Wien, Juli 1999 1249 

Gunter Grass A.G. Rajić Im Krebsgang, 2868 
Gunter de Bruyn A. Bajazetov-Vučen Buridans Esel 2890 
Christof Ransmayr - Z.Krasni Die letzte Welt 3107 
Elena Ferrante J. Brborić Storia di chi fug;ge e di chi resta 8316 

The first envisioned set of 26,118 sentences (a set of expert translations, Ti) was created 

by simply extracting, sentences from the translations listed in novels. The set contains 

536,639 tokens (about 20.55 per sentence) and has a type-token ratio of 0.1124. 

The second set (low-quality sentences, T») was created by taking; each sentence from 

the first set and applying, one of the following transformations at random: 

• Lemmatization: Each word in the sentence is replaced with its lemma based on 

Serbian Morphological Dictionaries, to make the sentences prone to morphosyntactic 

incorrectness. Although it is possible that the lemmatized sentence is equal to the 

original one (in case all words in the original sentence were already lemmas), a simple 

equality comparison between them calculated that this happens less than 0.8% of 

the time; 

•  Random mixing of word order within a sentence: A sentence was transformed into a 

list of words and punctuation marks, which was then randomly shuffled and put back 

together into text. This was also conducted to make the sentences prone to syntactical 

incorrectness, especially regarding, the position of prepositions and adjectives. As in 

the previous case, this does not necessarily mean that the sentences are incorrect, but a 

manual evaluation of a set of 400 sentences found that this happens in less than 0.6% 

of the cases; 

• Random replacement of words in the sentence: namely, each word in the sentence is 

replaced by another, random word of the same grammatical category from the Serbian 

Morphological dictionaries, in order to make it prone to semantic incorrectness. 

The application of these transformations does not affect sentence lengths, but the type- 

token ratio is decreased to 0.0902 (due to the lemmatization of one part of the sentences). 

The third set of sentences (machine translations, T5) was obtained by running the orig- 

inal sentences (in German and Italian) through the Google Translafe service and translating, 

them into Serbian. Another simple equality comparison revealed that they differ from 

expert translations about 98% of the time. These sentences are somewhat shorter (average
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of 19.03 tokens per sentence and 496,989 total), but the type-token ratio of 0.1106 is quite 

similar to the one of the first set. 

The complete textual dataset T = U?:1 Tj is a sequence comprising, 78,354 sentences 

divided into three subsequences Tl of equal size |T]| = 26,118. 

2.3. Sentence Perplexities and Perplexity Vectors 

Definition 2. Let i,j c Z. Integer interval |i.. j| is definnedas (ke Z|i<k< j}. 

Definition 3. Let x = (x;)i_) e R" and [[ xi # 0. The vector x-1 = (Xl H_ is the 

element-wise inverse (also called Hadamard inverse) of vector x . 

Definition 4. Perplexity vector (PPV) [56]ofa language model EJMI on a sentence s = Q10b ... (0n 

is calculated applying the Equation (1) to each N-gram of tokens within a sentence (N fixed, 

Nc|1..nj): 

1 - 
Pra(aid...0N) N 
Peo4(0203...ONJX1) N 

PPVe a(s) = PPVe (qy0> ... 0) = . ) 

_1 
PC„M(ZUanJ·lwanJ·Z .. ·wn) N| 

Size N = 5 is used during this experiment. The size of PPV for a given sentence s is 

n — N +1 and therefore varies depending on the number of tokens n in s. 

Leti,,kc N,i,je [1..3],kce [1..m]. The final dataset D consists of: 

Di Subset containing, three sequences of inverse perplexity triples, one for each dataset 

Tj, i.e. j1.e, 
( 1 1 1 

ppUb){1]' ppUb)[2]" pp0b)[3] 
where pp(fk) |i] represents perplexity of the model M;j on the kth sentence in the 

dataset Tj, calculated using (1). See Appendix A for the implementation details. 

D, The subsetcomprised three sequences, one for each dataset Tj, where every sequence 
element is a triple containing the Hadamard inverse of perplexity vectors, i.e., 

)k (4) 

((ppvUb){1})"1, (ppv0jb){2])"—1, (ppv0)|a|)?—1), (5) 
and p pv(fk) |i| represents the perplexity vector of the model M; on the kth sentence in 
the dataset Tj, calculated using , (3). 

Values stored in sets D1 and D2 were used to measure the classification performance 

of (both standalone and composite) language models on the tasks of detecting low-quality 

sentences and machine translations (see Section 4). 

Definition 5. Lef (x;)P_ and (yi)!_ be huo sequences of length n. The Pearson linear correlation 
coefficient r is defined as 

n 
i=1 (x' __ Ž) (yl _— y) 

VO - X))}-L 10 —3)2 
where * = % }_ Xi represents the mean of x and analogously for . 

r= , (6) 

Leti,J,k,1 e [1..3] and MjTj be a sequence (ppU*)|i})x such that |MiTj| = |Tj| = m, 
i.e., a sequence of perplexity values obtained for sentences of dataset Tj using model Mj. 

In order to ensure that the perplexity values differ between both different models and 

different textual datasets, the Pearson coefficients r;jx; were calculated using, (6), as the
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primary measure of linear correlation between every two pairs MiTj and MkT,, where pairs 

share either a model (i = k) or a dataset (j = !). 

Tables 2 and 3 contain the resulting; Tij coefficients between M,·Tl- pairs, where pairs 

share the same dataset in Table 2, while pairs in Table 3 share the same model. 

Table 2. Pearson correlation coefficients between sequences of perplexities obtained using, two 

different pairs (model, dataset) MiTj with the mutual dataset. 

Model MiTi oT, MsTi 

MiT, 0.265 0.044 
MaTi 0.265 —0.019 

MaT, 0.044 —0.019 

MiDb 271> MaT> 

MiT» 0.166 0.174 
M>aT» 0.166 —0.116 
MaT> 0.174 —0.116 

MiT5 275 MsTs 

MiTs 0.225 0.065 
Mo)Ta 0.225 —0.060 
MaT5 0.065 —0.060 

Table 3. Pearson correlation coefficients between sequences of perplexities obtained using, different 

pairs (model, dataset) M,Tj with the mutual model. 

MiTi ıD MiTs 

MiTi 0.515 0.645 
MiT) 0.515 0.369 
MiTa 0.645 0.369 

MoTi PabI MaTs 

M.T, 0.803 0.512 
M? 0.803 0.419 

MYs 0.512 0.419 

MaTi 30 MaTs 

Man 0.790 0.676 

MaT) 0.790 0.544 
MaTs5 0.676 0.544 

The results presented in Table 2 confirm the uniqueness of perplexities outputted 

using, the prepared models, with the highest correlation coefficient being 0.265 between the 

models Mi (control) and M» (semantic) and all of the other correlation coefficients being, 

less than 0.05. On the other hand, the much higher correlation was apparent in Table 3, 

averaging at about 0.56, indicating, that the models have trouble differing, between the 

datasets, especially model M» between the datasets Ti and T» (inability to distinguish 

the control set from the artificially-defected, low-quality sentences), with a correlation 

coefficient of over 0.8. In Section 3, we introduce composite models as a form of overcoming; 

this insufficiency. 

Once the data were confirmed to be of value, all of the perplexity values in sets Di; and 

D» were converted to their inverse value, which concluded the creation of the dataset D 

according, to Equations (4) and (5). This was carried out for the sake of their easier input 

into the machine learning algorithms afterwards in the experiment. 

3. Features and Compositions 

As mentioned in Section 1.3, two composite models, CMi and CM», built on the result- 

ing perplexities were envisioned for this experiment. The first, simpler model (Section 3.1) is
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based on a stacked classifier architecture which is directly derived from the previous research 

on the subject [26,27]. The second, more complex model (Section 3.2) was designed specially 

for this experiment and relies on features extracted using, several different scenarios. 

3.1. Simple Neural Network Classifier (CMy) 

The stacked sentence classifier used in the first composition (CM ) is based on a simple 

neural network architecture consisting, of one fully connected layer—two perceptrons, one 

for each class, sharing a triple of input values p = (P,, P,, P)), an element of dataset D;. 

The triple p corresponds to a sentence being classified and each P; is an inverse of the 

perplexity value of model M,, i,j e [1..3] (Figure 2). 

( Fully connected layer (3, 2) ) 

Figure 2. A simple neural network for binary sentence classification, consisting, of one fully connected 

layer with input values (P,·)?_1 (perplexities of the models M; on an input sentence, i c |1..3]). 

The CMi output y is the predicted class of the sentence. The value of y can be either 0, 

meaning expert translation, or 1, meaning an alternative class the network was trained to 

recognize, depending on the classification task. The calculation of y can be described in the 

following manner: 

y= f(pW! +b) =pWI +b 0) 
where: 

• p=(P,P,P,) c R*isa triple containing, inverse of perplexities corresponding to the 

input sentence; 

• W=(uwij)e R?*3 is a weight matrix. For a fixed i e |1..2], (wij)j e R are learnable 

weights of the ith perceptron in CMu, j e [1..3]; 
• bceMm? components are learnable biases of the corresponding, perceptrons in CMy; 

• fisanactivation function defined as identity f(z) = z,i.e., linear activation is used. 

See Appendix A for the implementation details and Section 4 for training details. 

The goal of this model was to confirm the advantages of using a stacked classifier on 

the perplexity outputs of transformer-based languagje models, as was already confirmed 

for using it on probabilistic outputs of part-of-speech taggers [26] and cosine similarities of 

documents before that [27], in order to give an answer to RQ2. 

3.2. Complex Multi-Featured Neural Network (CMo) 

In contrast to CMi (Section 3.1), the second composite model (CM») was designed 

to maximize the volume of inputted features at the expense of simplicity. The goal of 

the feature extraction for this experiment was to create a large, determined, and finite list 

of inputs for a binary classifier; hence, all of the features are represented as numerical 

values in the range —1 to 1. In addition to the three features used by CMu, a multitude of 

additional features are extracted from subset D» (Section 2.3), using three separate neural 

network components: 

NNiı The time-and-frequency-domain-based component represents a small, single-layer 

neural network used to extract eight features from a multitude of properties calcu- 

lated using, a set of prepared formulas over each vector from D (see Section 3.2.1);
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NN> The rcurrntneuralnetwork (RNN) [37] component represents a small neural 

network with a recurrent layer with four hidden states. Vector triples from dataset 

D» are inputted into this layer in order to extract four additional features for each 

triple (see Section 3.2.2); 

NNs _ Theconvolutional neural network (CNN) [38] component represents a small neural 

network with a convolutional and a pooling layer instead of a recurrent one, which 

is used to extract eight more features from each vector triple of dataset D> (see 

Section 3.2.3). 

For the purpose of training, components NN» and N Nya, the length of the vector inputs 

(extracted from the D» set) for these two components was resized to the length / = 64, 

employing either truncation (if the vector was longer) or zero-padding (if the vector was 

shorter). This was conducted for the purpose of easier batching of vector inputs during the 

training, procedure for recurrent and convolutional layers. The NNi component uses the 

original vectors. All of the mentioned components are connected to one final component: 

NNa  The -classifying, component represents a neural network with two fully connected 

layers that takes all of the aforementioned features as input and then outputs the 

class of the inspected sentence. 

The four components are trained together as one binary classification system (for each 

of two envisioned classification tasks) in order to give a definite answer to RQ3. 

3.2.1. Time-and-Frequency-Domain-Based Component (NN;i) 

The first CM» component is used to extract features from different time-domain and 

frequency-domain properties of the vectors from dataset D», while treating them as either 

time-series (by using, tokens as a unit of time and inspecting the perplexity value at each 

point) or signals. In the case of time-domain (TD), the twelve properties TDi-TDi> were 

examined using each vector as an input for twelve different formulas. Some of them are 

reused to examine six frequency-domain (FD) properties FDi-FD, but the input is changed 

to be a power spectrum calculated using a fast Fourier transform of each vector. 

The following, time-domain properties were determined for vector x = (y;j)"y: 

TDi „Minimum value found in the inspected vector: 

Min(x) = išn[lir::] Xi; (8) 

TD>, Maximum value found in the inspected vector: 

Max(x) = max #3;; (9) 
ic|1..n} 

TDa3 Peak-to-peak,calculated as the difference between the maximum and minimum 

value: 

P.(x) = Max(x) – Min(x); (10) 

TDa The arithmetic mean of the values in the inspected vector: 

1 i 

e -_NY X 11 *-2)M đ1) 
=1 

TDs Rootmean square: 

RMS(x) = \/% Ž xi'; (2) 
i
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TD Variance,i.e.the spread of data around the mean: 

o_1Y\N i 
= — Ž — X)“; 13 n i:l(x' %) (13) 

TD; The standard deviation of the inspected vector: 

(4) 

TDs - Crestfactorai.e the quotient of the maximum value and the root mean square: 

Max(x) 
=_=_——; 1 CF(x) RMS(x) (15) 

TDo | Form factor, i.e., the quotient of the root mean square and mean: 

FF(J() = %?(X); (16) 

TDu _ Pulse indicator, i.e., the quotient of the maximum value and the mean of the vector: 

PI(x) = Maš(x); (17) 

TDui Vector(Pearson) kkurtosis,i.e., the measure of the outlier presence in the inspected 

vector: i 

52=E[(x;ž)], (18) 

where E is the expectation operator; 

TDui, Vector skewness,i.e., the measure of the data symmetry around the mean: 

71=E[(x;ž)3], 09) 

where RE is the expectation operator. 

As the second set of properties is based in the frequency domain, each vector was first 
subjected to the fast discrete Fourier transform, calculating, a new vector (Zk)ke [0..n-1} < C”": 

ul . 

Fk= ) xje EO 0, ke|O..n-—1J, (20) 
j-1 

where n is the length of the vector x that is being transformed and i c C is the imaginary 

unit, » = —1. 
Afterwards, the power spectrum vector y — (Vk)kc [0..n—1) is calculated: 

2 

yF@, ke|0..n—1}. (21) 

With the calculated power spectrum of the vector, the following, frequency-domain 

properties were extracted: 

FDi Powerspectrum maximum, calculated using, Equation (9), where x is the power 

spectrum of the inspected vector;
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FD, Powerspectrum peak, calculated as the absolute maximum value found in the 

power spectrum: 

Pa = max |zj|, (22) 
ic|1..n} 

where x is the power spectrum of the inspected vector; 

FD,a Powerspectrum mean, calculated as an arithmetic mean of the values in the power 

spectrum using Equation (11), where n is the length of the power spectrum x; 

FDa Powerspectrum variance, calculated using, Equation (13), where n is the length of 

the power spectrum x and + is its sample mean; 

FDs Powerspectrum kurtosis, calculated using, Equation (18), where + is the mean of 

the power spectrum vector +, O its standard deviation, and RE is the expectation 

operator; 

FD« Powerspectrum skewness, calculated using Equation (19), where + is the mean of 

the inspected vector +, c its standard deviation, and F is the expectation operator. 

These 54 properties (18 for each vector in a D» dataset triple) are used as an input for a 

simple fully connected layer in order to extract eight final features (l·"]);šz1 as depicted in 

Figure 3. This was conducted in order to reduce the total number of features, as well as 

to extract only their most important aspects. The rectified linear unit function (ReLU) is 

applied to the output in order to prepare it for passing through the adjacent linear layer 

in NNa. The neural network component is visualized in Figure 3. The calculation of the 

features can thus be described as follows: 

(F])?zl = ReLU(gWT + b) (23) 

where: 

• Zgc R” is a series of time-domain and frequency domain properties extracted from 

the triple containing the Hadamard inverse of perplexity vectors using TDi-TDi> and 

FDi-FDx, corresponding to the input sentence; 

• W=(uwij)c R9X54 is a weight matrix; (w;ij)j e R” are learnable weights of the ith 
perceptron of NNi, i c [1..8],j e [1..54]; 

•  Componentsofb c RŠ are learnable biases of the corresponding, perceptrons of NNju; 

• Ifz= (Z,·)?:1 c RŠ, ReLU is a rectified linear unit function defined as ReLU(z) = 

(ReLU(z;))Š5_, = (max(0,z;))* ,. 

See Appendix A for the implementation details. 

(a)(e)(e) - -) 
TO —— 

\ Fully connected layer (54, 8) ) 

OJOJOJO 
OJOJOJO 

Figure 3. Fully connected layer with an input size of 54 (for 18 vector properties extracted from each 

of three input vectors) that is used to extract a total of eight time and frequency-domain features 

F=(Fj)kLa- 

3.2.2. RNN Component (NN») 

A second set of features (Fl)}Ž o Was extracted using, a recurrent neural network com- 

ponent (Figure 4). One recurrent layer with four hidden states h = (h(7 ) iH ı Was used to
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process each D dataset triple of vectors x = (x(l), x(), x(S)), where x e Ri,ic [1..3], 

and / is the resized length of input vector, introduced at the beginning, of Section 3.2. 

For each t G [1 .{|, a triple x = (xt(l),xt(z),x@)) c R is processed with hidden states 

h,_i = (h i )1, h?)l h( ) ıe R“ from the previous loop pass-through (if any) with the 

goal to extract a number of recurrent features. 

(••··? 
(O00O0) 
Figure 4. Visualization of neural network component based on a recurrent layer with four hidden 

states h used to process input values yy = (Yšl), xŠZ ,X 3)) e RŠ, where x;i) corresponds to time point 

t e |1..{} andlanguage model M,,i c [1..3]. 

The calculation of the hidden state values is performed as follows: 

hi = tanh(x}W/! + bjy + _ıWi\N +buy), te..f}, (24) 

where: 

• hi c R is the hidden state at time t. The initial hidden state at ime0isho=0c ]R4; 

• · x(c R isthe input at time t; 

•  W.,, cR 3 are the learnable input-hidden weights of the (only) layer (4 hidden states, 

3 input values) of NN»; 

• - biy c Ris thelearnable input-hidden bias of the (only) layer of NN»; 

• WlR are the learnable hidden-hidden weights of the (only) layer of NN»; 

• · byy c Ris thelearnable hidden-hidden bias of the (only) layer of NN»; 

• · tanhisthe hyperbolic tangent activation function. 

See Appendix A for the implementation details. 

The recurrent layer outputs (from four hidden states after the final pass-through) 

are taken as four extracted features (F])}Žg = hy. The visualization of the component is 

depicted in Figure 4. 

3.2.3. CNN Component (NNx) 

Definition 6. For finite discrete functions f,g < CN, N c N, the (circular) cross-correlation [39] 

is defined as: 

(f*g Z m+")mod N] (25) 

A somewhat more complicated process was the extraction of the final eight features 

from the triples using the convolutional architecture, comprising, three layers: 

1. A one-dimensional convolutional layer with three input channels (C, = 3), eight 

output channels (Co„+ = 8), a size-five kernel (K, = 5), and a stride of two (S. = 2);
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2. A one-dimensional max pooling layer [40] with a size-five kernel (K, = 5) and stride 

of two (Sy = 2); 

3. _A fully connected linear layer with an input layer with a size corresponding to the 

number of features extracted using the previous (pooling;) layer and the output size of 

eight. Just like for NNi, a ReLU activation function was applied in order to prepare 

features for passing, through the first layer of the NNa component. 

During the processing, of input x = (x0),x0),x09)) using, the first layer, the kernel 

is sliding, simultaneously across the values in all three vectors xO) c R”, je [1 .. 3], 

extracting,eight features for each inspection. The total number of inspections performed, m, 

is calculated as follows: 

- K m V J +1 (26) 
SC 

where { is the resized and fixed length of the inputted sequences (/ = 64), K. the size of 

the kernel (K. = 5), and S. stride length (S. = 2). Features outputted for each inspection 

co = (cojj) e RmxCowt are calculated in the following manner: 

Cin 
cojj = bj + ;;1 Wjk xinput;k, (27) 

where: 

• _ iC|l..m|isthe inspection index; 
• jc{..Co)= H..8]is the outputted feature index; 

• kc|I..C}= [..3]is the input channel index; 

•  Componentsofbce R are learnable biases of the corresponding output channels for 

the convolutional layer; 

• W=(uwk)c R**3 is a weight matrix; (“jk)k < R? are learnable weights of the jth 

output channel and kth input channel, j e [1..8],k e [1..3]; 
• Input= (input/) e R5 represents the inspected values for the ith inspection and for 

kth input channel, with inspection being defined via the kernel size (K, = 5) and stride 

(Se = 2). 

Outputted values co are then processed using, a max pooling, layer, where a second 

kernel of the same size is sliding across the values in each channel, performing the inspec- 

tions and extracting the maximum value for each one. This step results in M number of 

new features, where M is calculated as: 

MZ(VŠKPJH)*C”“ (28) 
P 

where m is the number of inspection of the convolutional layer (26), K, the size of the 

kernel (K, = 5), S» stride length (S —= 2), and Cou the number of convolutional layer 

output channels. 

Values compiled using the max pooling, layer po = (po,)f\i ı are calculated as follows: 

poi = jer[I}?I)žp] input,]·, (29) 

where: 

• · iC|l..M|isthe inspection index; 
• jece|1..K|istheindex of values within inspections; 
• KJ isthe size of the kernel of the max pooling layer; 

• Input= (input;) e RM represents the inspected values of the ith inspection, with in- 

spection being defined via the kernel size (Ky = 5), stride (Sp —= 2) and output channel 

of the convolutional being inspected.
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Lastly, values compiled using, the max pooling,  layer po = (po,)fi ı are used as an 

input for a fully connected linear layer with input size M and output size of eight, which 

is used to produce a final tally of eight features extracted by this specific method (F]-)]ZŽB, 

where the feature values are calculated in the following, manner: 

(Fj )Pa = ReLU(po · WT + b) (30) 

where: 

• po is an array of features outputted from the max pooling layer, po = (poj)iAi ıc RM; 

• W=(uwij) e R8X*M is a weight matrix; (wij)j e RM are learnable weights of the ith 
perceptron in the sole linear layer n NNa, i c [1..8],j e [1..MJ]; 

•  Componentsofb e RŠ are learnable biases of the corresponding, perceptrons of the 

sole linear layer in NNya; 
• Ifz= (z,·)?:1 c RŠ, ReLU is a rectified linear unit function defined as ReLU(z) = 

(ReLU(zi))ŠS_, = (max(0,z;))* ,. 

See Appendix A for the implementation details. 

A complete neural network component used to extract them is visualized in Figure 5. 

„ RRRAQEOO]OOA GG D DD D DO 

— 

— 

\ Fully connected layer (M, 8) ) 

(5)GO() ) 
OJOJOJO 

Figure 5. A neural network component featuring, a single one-dimensional convolutional layer 

(with three input channels, a size-five kernel, and a stride of two) used to process input values 

x= (xj(l),x]@),xj(g)) c RŠ, where x}(') corresponds to time point j c |1..{/] and language model 

Mi,i c |1..3]|. Outputs of this step (co = (cnj)fg'l) are inputted into a single one-dimensional max 

pooling, layer (with a size-five kernel and a stride of two), and the outputs of the max pooling layer 

(po = ( pnl·)]l\g ı) are used as inputs for a fully connected layer, which is used to extract the final 

features (F])IŽZB.
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3.2.4. Classifying, Component (N Nu) 

Eight features were extracted using, the first component (NN, Section 3.2.1), four 

features were extracted using the second component (N N», Section 3.2.2), and eight features 

were extracted using, the third component (NNya, Section 3.2.3) together with three values 

that were used by the first composition (CMh, Section 3.1), which were used as an input 

for one final fully connected neural network component for binary classification. This 

final component consists of one input layer with input size 23 (20 for extracted features 

F= (F])]ZU ı and 3 for a triple ofinverse perplexity values p = (Pi, P», P3)), connected to the 

output layer via one hidden layer with eight neurons (Figure 6). 

Fully connected layer (23, 8) ) 

Y 

( Fully connected layer (8, 2) ) 

Figure 6. A neural network component consisting, of one fully connected linear size-23 input layer 

(20 for extracted features F = (F])]ZE1 and 3 for a triple of inverse perplexity values p = (P;, P», P3)), 

and one fully connected linear size-8 hidden layer used to perform binary classification based on the 

inputted features. 

As is the same for CMu, the output y of CM» is the predicted class of the sentence. 

The value of / can be either 0 (expert translation) or 1 (alternative class the network was 

trained to recognize, depending on the classification task). Calculation of the y for CM» 

can be described in the following, manner: 

y = ReLuU((p” F)WU)! + b)W0C)! + , (31) 

where: 

• p fe R” is a concatenation of p = (B,,P,) c R”a triple containing, inverse 

of perplexities corresponding to the input sentence, and F = (F])]Zgl c R” a triple 

containing, the inverse of perplexities corresponding to the input sentence; 

• W= (wšzl)) c R9*29 is a weight matrix; (wš].l))] c R?3 are learnable weights of the 

ith perceptron in the input layer, i e [1..8], j e [1..23]; 

• WO)= (wš]z)) c R?XŠ is a weight matrix; (wl(jz)) je RŠ are learnable weights of the ith 

perceptron in the hidden layer, i e [1..2],j e [1..8]; 
•  Components of bi < RŠ and b> c RŽ are learnable biases of the corresponding, 

perceptrons in the first (bi) and second (b>) fully connected layer; 

• Ifz= (Z,·)?:1 c RŠ, ReLU is a rectified linear unit function defined as ReLU(z) = 

(ReLU(z;))Š5_, = (max(0,z;))* ,. 

A complete stacked classifier that uses transformer outputs as inputs is composed 

of all of the described components and is depicted in Figure 7. See Appendix A for the 

implementation details and Section 4 for training details.
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Inverse perplexity 

Inversed perplexity vector* 

Vector properties extraction 

Fully connected layer 

Recurrentlayer 

Convolutional layer 

Max pooling layer 

Extracted features 

OOO OOOOOOOO OOOO OOOOOOOO 

23,8 

M 
* Hadamard inverse @ 

Figure 7. A visualization of the complete architecture of composite model CM> where Hadamard 

inverse perplexity vectors (depicted as yellow stadiums) are generated using, standalone language 

models (Mi-Mn) and are being used as input for NNi-NNa. All layers are denoted with a number 

of input and output parameters, and stadiums of different colors: violet for the recurrent, red for the 

convolutional, orange for the max pooling layer, and blue for fully connected linear ones. The gray 

stadium represents vector properties extraction (not a trainable layer), where n is a variable sentence 

length. The colored circles mark different features used for NNu (yellow: inverse perplexities 

calculated using, Mi-Ma; gray: time-and-frequency-based features calculated using, NNu; violet: 

recurrent features calculated using, NN»; red: convolutional features calculated using, NNy). 

4. Results 

For the evaluation, we used five-fold cross-validation over dataset D, for which both 

subsets were split into five (nearly) equal, class-balanced chunks. For each of the five folds, 

a different chunk was used for testing, while the other four were used to train ten classifiers, 

including five for each classification task (C+, C>). Three simple classifiers were based directly 

on standalone models (M+, M», and My), while two composite classifiers (CM+i and CM») 

were trained on top of all three standalone models. Different training:, procedures were 

deployed depending on the classifier being trained, where different levels of input data 

complexity influenced the complexity of the models (Table 4).
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Table 4. Five classifiers used for each classification task, input data they are using, (middle) 

(cf. Section 2), and the description of their architecture (right). 

Model Input Data Stacked Classifier Type 

Values from D;i dataset originated from 
M model M 

1 An extension of the model in the form 
M 'Values from D;dataset originated from of a single input perceptron for binary 

2 model M» classification, which uses that model's 

Values from D;i dataset originated from (inversed) perplexity output as input 
Ms model Ms 

Value triples from D dataset, i.e., values A simple neural network with two 

CMi originated from all three standalone perceptrons and three shared inputs 
models (M+, M» and Mx) (cf. Section 3.1) 

A complex neural network comprising, 
CcM All of the triples from both D; and Da sets four different components (cf. Section 3.2) 

For each training session, the Adam optimizer [41] with a learning rate of 0.01 and a 

batch size of 64 was used, and the number of training, epochs was limited to 50. In order 

to measure the improvements achieved using, the proposed composite models, the results 

achieved using, the standalone models (Mi, M», and Ma) were marked as the baseline. More 

precisely, the baseline was defined as the best result achieved by any of these M,, i c [1..3] 

for each classification task Ca and C>». The experiment was conducted to explore whether 

the composite models would achieve a statistically significant improvement. 

As already mentioned, during; the preparation of the five data chunks for each of 

the two binary classification tests, an equal number of samples for both classes (T, and 

To for task Ci or Ty and 75 for task C>») was prepared by stratifying the already balanced 

data according to the output class. This resulted not only in the effective training, but also 

in the accuracy always being, equal to the F, score. For that reason, we will focus on the 

classification accuracy metric when presenting the results of the cross-validation, or relative 

accuracy increase when depicting the improvements the composite models achieved over 

the baseline. The results of the evaluation will be presented in Section 4.1. 

4.1. Quantitative Results 

The cross-validation accuracy of all of the five inspected models (Mi, M>, Ma, CMi 

and CM-) on the task of low-quality sentence detection (C+), as well as the highest achieved 

accuracy and mean accuracy, are presented in Table 5. The accuracy results of the same 

models, but on the task of machine translation detection (C>), are presented in the same 

manner in Table 6. 

Table 5. Cross-validation accuracy results achieved by three simple (left) and two composite models 

(right) on the low-quality sentence detection task (Ci). The upper part of the table depicts the results 

for each of the five folds, while the lower part of the table depicts maximum (Max) and mean (i) 

accuracy. The highest accuracy among, standalone models (baseline) and the best overall scores are 

marked in bold. 

Mi M Ms CMi CM: 

fold 1 0.8468 0.5599 0.6117 0.8528 0.8631 
fold 2 0.8456 0.5559 0.6187 0.8548 0.8648 
fold 3 0.8506 0.5617 0.6198 0.8564 0.8716 
fold 4 0.8486 0.5576 0.6181 0.8592 0.8628 
fold 5 0.8522 0.5572 0.6194 0.8616 0.8690 

Max 0.8522 0.5617 0.6198 0.8616 0.8716 
H 0.8488 0.5584 0.6175 0.8569 0.8663
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Table 6. Cross-validation accuracy results achieved by three simple (left) and two composite models 

(right) on the machine translation detection task (C>). The upper part of the table depicts the results 

for each of the five folds, while the lower part of the table depicts maximum (Max) and mean (i) 

accuracy. The highest accuracy among, standalone models (baseline) and the best overall scores are 

marked in bold. 

M M Ms CMi CM» 

fold 1 0.5000 0.5000 0.5086 0.5077 0.5334 
fold 2 0.5000 0.5000 0.5075 0.5157 0.5497 
fold 3 0.5000 0.5000 0.5069 0.5242 0.5389 
fold 4 0.5000 0.5000 0.5091 0.5205 0.5381 
fold 5 0.5000 0.5000 0.5131 0.5176 0.5600 

Max 0.5000 0.5000 0.5131 0.5242 0.5600 
H 0.5000 0.5000 0.5090 0.5171 0.5440 

The average relative accuracy increase (RAI) and average error rate reduction (ERR) 

compared to the baseline are calculated for both composite models (CMi and CM») on 

both classification tasks (Cyi and C») using the equations: 

! _ 

RAI=" (32) 
a 

and 

ERR= —0 (33) 
O 1-a 

where a is the baseline accuracy and a' is the alleged improved accuracy. 

These results, aiming to give a definite answer to the research questions RO1-RQ3, 

are presented in Table 7. 

Table 7. Relative accuracy increase (RAI) and error rate reduction (ERR) achieved by each composite 

model (CM; and CM) for each classification task (Ci and C»), relative to the baseline results (highest 

achieved accuracy among the standalone models: My, M, and My). The highest relative accuracy 

increase and error rate reduction for each task are marked in bold. 

Relative Accuracy Increase (RAI) Error Rate Reduction (ERR) 
a O a ii 

CMi 0.0095 0.0159 0.0536 0.0165 
CM» 0.0206 0.0688 0.1157 0.0713 

4.2. Qualitative Results 

The improvement achieved by the composite model CM» over the baseline (2.06% 

relative accuracy increase on Ci and 6.88% relative accuracy increase on C>) is probably 

not due to mere chance, but despite that, we cannot ascertain the statistical significance 

via simple comparison. In order to check the integrity of the results, we used the corrected 

repeated k-fold cross-validation test [42] to determine the actual statistical significance of the 

achieved improvements. The t-score was calculated as: 

P (ai- 6) 

\/(% +r)o? 

where k is the number of cross-validation folds (k = 5), a; the baseline accuracy at fold i, a 

the improved accuracy at fold i, r the size ratio of test and training, sets (r = 0.25), and o- 

the variance of the difference of a and a/7 across folds. 

t= , (34)
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For each composite model (CMi, CM)) and for each classification task (Ci, C>), we 

calculate the t-score using, Equation (34) and from it the p-value using, StudenFs Cumulative 

distribution function [45]. These results are presented in Table 8. Here, we observe a high 

statistical significance of the accuracy increase in three out of four cases with the p-values 

being below 0.05, in accordance with the standard confidence level of 0.95. The only outlier 

represents what the improvements classifier CMi achieved over the baseline for task Ci 

(machine translation detection), p = 0.5224, in which case the nul! hypothesis (stating that 

no statistical significance exists) cannot be rejected. 

Table 8. Calculated t-score and p-value, indicating, statistical significance of accuracy improvements 

the composite classifiers (CMi and CM) achieved over the determined baseline for each classification 

task (Ci and C). 

f-Score p-Value 

! O i c 

CMi 2.0674 0.6397 0.0387 0.5224 

CM» 3.5974 2.0536 0.0003 0.0400 

5. Discussion 

In this paper, we experiment with two separate classification tasks: low-quality sen- 

tence detection (Ci) and machine translation detection (C>). On both tasks, we test the 

improvements achieved using composite language models (built upon perplexity outputs 

of several language models) over the accuracy of standalone models, which is taken as 

a baseline. 

From the results presented in previous section, precisely Table 5 (cross-validation 

results on task C), the following, observations are made: 

Q: Model M; is the best standalone model for low-quality sentence detection (average 

accuracy of 84.88%), and should thus be taken as the baseline for Cy; 

Q> Composite model CMi outperforms this baseline on each cross-validation fold (with 

an average accuracy of 85.69%; 

Q3 Composite model CM» outperforms the composite model CMu across all cross- 
validation folds with an average accuracy of 86.63%. 

Additionally, from the results presented in Table 6 (cross-validation on task C>»), we 

note the following, observations: 

Qa Model Muy (syntactic) is the best-performing, standalone model for machine-translation 

detection and should thus be taken as the baseline for C»>, alttough with an accuracy 

of only 50.9%; 

Q5 None of the other standalone models managed to surpass the 50% accuracy score 

(on any fold), indicating that perplexities outputted by the control (Mi) and semantic 

model (M) are not indicators for machine translation detection; 

Q6 Composite model CM; slightly outperforms the baseline on four out of five cross- 

validation folds, and also on average (accuracy of 51.71%); 

Qz Composite model CM» outperforms the baseline, as well as composite model CM, 

across all cross-validation folds, with an average accuracy of 54.4%. 

Lastly, from the results presented in Table 7 (average relative accuracy increase and 

error rate reduction per composite model and per task) and Table 8 (statistical significance 

of achieved accuracy improvements per composite model and per task), the following is 

observed: 

Qs Composite model CM; achieved the average RAI of 0.95% for classification task C; 

and 1.59% for classification task C». The former is deemed statistically significant 

for a confidence level of 95% (p = 0.0387), while the latter is deemed statistically 

insignificant (p = 0.5224);
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Qo Composite model CM achieved the average RAT of 2.06% for Ci, 6.88% for C>, 

error rate reduction of 11.57% for Ci, and 7.13% for Co. Both improvements are 

deemed statistically significant for a confidence level of 95% (p = 0.0003 and p = 0.4, 

respectively); 

Qu The results achieved by all tested models, and especially Mi, CMi, and CM>», are 

comparable to the state-of-the-art results achieved for low-quality sentence detection 

for the English language [20]. 

Based on the collected cues, primarily Qa and Qs, we conclude that there is indeed a 

use for semantic and syntactic models in sentence classification. While the positive results 

achieved using, composite classifiers that incorporate these models indicate their importance 

for refinement of the classification, the fact that syntactic model Ms outperformed the 

control model M for classification task C>» indicates a positive answer to the research 

question RQ1: 

RQ1: Are semantic and syntactic models justified tools to use for sentence classification 

tasks, e.g., low-quality sentence or machine translation detection? 

This notion that models M» and My provide additional information despite being; 

trained on the same text (just different representation) is additionally apparent throug,h 

results achieved by composite model CM (Q-, O, Qg). While there is not definite statistical 

significance in its improvements over the baseline for the CM» task (p > 0.05), it definitely 

improved over the baseline on the CMu task (p = 0.0387) as evident in Qg, confirming, 

a positive answer to the first research question and imploring, a positive answer to the 

research question RQ2: 

RQ2: Can composite language models based on outputted perplexities and the wis- 

dom of crowds-based compositions improve on the accuracy of standalone models on 

classification tasks? 

Finally, the improvements the composite model CM> achieved over both the stan- 

dalone models (M+, M»>, and My) and the composite model CM; (Qs, Qz, Qo) undoubtedly 

provide a positive answer to the final research question RQ3: 

ROQ3: Can Jfeatures extracted from perplexity vectors be used to further improve the 

classification accuracy of composite models? 

This also furthers the indication of the value of semantic and syntactic models, but most 

of all, it affirms the value of perplexity vectors [36] in perplexity-based sentence classification. 

If we revisit the results for low-quality sentence detection task C; (Qi, Q>, Q3), we 

conclude that for the task, while partially solvable using, a standard language model, 

with an accuracy of nearly 85%, a significant improvement can be made via incorporating, 

other language models and perplexity vectors. No statistically significant improvements 

over the baseline were found using the model CMi for this task, which is probably caused 

by the poor performance of the semantic and syntactic model (average accuracy of 55.84% 

and 61.75% compared to the baseline of 84.88%). Due to this fact, we must contribute the 

improvements achieved by model CM> (total error rate reduction of over 11%, Q») to the 

usage of perplexity vectors, indicating, that low-quality sentences are detectable via features 

contained within them. 

As for the task of machine translation detection (C») and the observed results on it (Qu+, 

Qs5, Q, Qz), it is apparent that its difficulty is much higher. Two out of three standalone 

models failed to outperform the 50% accuracy mark, which can be attributed to random 

selection. The only standalone model that could even slightly differentiate between the 

expert and machine translations was the syntactic one (but with very low accuracy), which 

could mean that expert and machine translations differ mostly in the syntax used. However, 

model CM; which uses all three achieved better results (average accuracy of 51.71%) and 

the improvements were found to be statistically significant, indicating, that the combination 

of syntax and semantics is a better indicator. Lastly, the results achieved by the CM>» model 

(relative accuracy increase of 6.88% and error rate reduction of 7.13%, Qo), despite the 
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somewhat low achieved accuracy of 54.4%, indicate a high improvement through the usage 

of features extracted from perplexity vectors for this quite difficult task. 

In conclusion, composite models are shown to improve on the accuracy of standalone 

models for classification tasks, with a composite language model based on a stacked 

classifier architecture that uses properties extracted from perplexity vectors as features being; 

singled out as the best option for detection of both machine translations (low accuracy) and 

low-quality sentences (high accuracy). It should be noted that the drawback of composite 

models is higher training  complexity and higher execution time. In future work, they 

should also be compared to bigger standalone models, i.e., whether the composition of 

a few smaller models is better than a large standalone model in terms of both training, 

and execution speed, as well as in accuracy. If composite models are shown to be feasible, 

the research should focus on improving their quality through the improvement of the 

standalone models that they are composed of. 

Perplexity vectors are shown to mitigate the main limitation of perplexity-based 

classification (the lack of dimensionality), but their limitations (aside from slightly higher 

execution time) are yet to be determined through future research. For example, features 

analysis should disclose the highest-value features of perplexity vectors, e.g., features 

extracted using, RNN or features extracted from frequency-domain-based properties of 

perplexity vectors. 

An inspection of further usages of both composite language models and perplexity 

vectors should be performed in order to expand on the idea of this research. Lastly, 

other methods should be tested for the examined tasks for the Serbian language, and a 

comparative study should be performed for a better understanding; of both previously 

achieved and future results. Most prominently, BERT or a RoBERTa-based model for Serbian 

should be fine-tuned for the aforementioned tasks and tested on the prepared dataset. 
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Abbreviations 

The following, abbreviations are used in this manuscript: 

ANN Artificial neural network 

BERT Bidirectional Encoder Representations from Transformers 

CLARIN · Common Language Resources and Technology Infrastructure 

CNN Convolutional Neural Network 

ERR Error rate reduction 

GPT Generative Pre-trained 

LSTM Long short-term memory 

ML Machine Learning, 

LP Natural Language Processing, 

PC Personal computer 

RAI Relative accuracy increase 

ReLU Rectified linear unit function 

RNN Recurrent neural network 

Appendix A. Implementation 

Perplexity. The calculation of sequence (4) is based on the Equation (1) and imple- 

mented using the transformers Python library (https:/ /huggingface.co/docs/ transformers, 

accessed on 13 October 2023). 

Perplexity vector. The calculation of sequence (5) is based on the Equation (3) and imple- 

mented using the transformers Python library (https:/ / hug:gingrface.co/docs/ transformers, 

accessed on 13 October 2023). 

GPT? models. The training of the used language models was implemented using the 

transformers Python library (https:/ / huggingfface.co/docs/transformers, accessed on 13 

October 2023). The training, of all models was based on the GPT2 training, configuration 

(https:/ /huggingface.co/gpt2/raw/main/config.json, accessed on 11 November 2023), 

and the tokenization of the dataset was performed using, the tokenizers Python library 

((https:/ /hug:gingface.co/docs/tokenizers, accessed on 11 November 2023). 

Fully connected layers. All fully connected layers for this research (used for com- 

posite model CMu, as well as neural netvork components NNi and NNu for composite 

model CM2?) are implemented using, PyTorch library and torch.nn.Linear class (https: 

/ //pytorch.org/docs/ stable/ generated /torch.nn.Linear.html#torch.nn.Linear, accessed on 

3 October 2023). 

Recurrent layer. A recurrent layer used for the component NN2 of the compos- 

ite model CM» is implemented using, PyTorch library and torch.nn.RNN class (https: 

/ //pytorch.org/docs/stable/ /generated /torch.nh.RNN.html#torch.nn.RNN, accessed on 

3 October 2023). 

Convolutional layer. A (one-dimensional) convolutional layer employed in the 

component NN3 of the composite model CM» is implemented using, PyTorch library, 

orch.nn.Conv1d class (https:/ /pytorch.org,/docs/stable/ /generated /torch.nn.Conv1d. 

himl#torch.nn.Conv1d, accessed on 13 October 2023). 

Max pooling layer. A (one-dimensional) max pooling, layer is employed in the 

component NN3 of the composite model CM» is implemented using, PyTorch library, 

orch.nn.MaxPool1d class (https:/ /pytorch.org/docs/stable/ /generated /torch.nn.MaxPooli 

d.html#torch.nn.MaxPool1d, accessed on 13 October 2023). 

Hyperbolic Tangent (Tanh) function. Tanh activation is used on the output of the re- 

current layer in the NN> component and implemented using,  PyTorch library, torch.nn.Tanh 

class (https:/ /pytorch.org/docs/stable/generated /torch.nn.Tanh.html, accessed on 13 

October 2023). 

Rectified linear unit function. After each non-terminal fully connected linear layer, 

as well as after each convolutional and max pooling layer, a rectified linear unit (ReLU) 

activation is implemented using, PyTorch library, torch.nn.ReLU class (https:/ /pytorch. 
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org,/docs/stable/ /generated /torch.nn.ReLU.html#torch.nn.ReLU, accessed on 13 October 

2023). The following layer use ReLU activation: 

1.  Thesolelayer NNi component; 

2. _ Eachlayerofthe NNa component; 

3.  The firstlayer of the NN component. 
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