Uporedna analiza Q i GSI klasifikacije za definisanje parametara smičuće čvrstoće stenske mase

Vojislav Đorđević

Дигитални репозиторијум Рударско-геолошког факултета Универзитета у Београду

[ДР РГФ]

Uporedna analiza Q i GSI klasifikacije za definisanje parametara smičuće čvrstoće stenske mase | Vojislav Đorđević | | 2023 | |

http://dr.rgf.bg.ac.rs/s/repo/item/0007501

Дигитални репозиторијум Рударско-геолошког факултета Универзитета у Београду омогућава приступ издањима Факултета и радовима запослених доступним у слободном приступу. - Претрага репозиторијума доступна је на www.dr.rgf.bg.ac.rs The Digital repository of The University of Belgrade Faculty of Mining and Geology archives faculty publications available in open access, as well as the employees' publications. - The Repository is available at: www.dr.rgf.bg.ac.rs

Univerzitet u Beogradu Rudarsko-geološki fakultet

Završni rad

Master akademske studije

Uporedna analiza Q i GSI klasifikacije za definisanje parametara smičuće čvrstoće stenske mase

Kandidat

Mentor

Vojislav Đorđević

Zoran Berisavljević, doc. dr

G618/22

Beograd, jul 2023. god.

Komisija:

1. Zoran Berisavljević, doc. dr, mentor

Rudarsko-geološki fakultet, Beograd

2. Miloš Marjanović, van. prof. dr, član

Rudarsko-geološki fakultet, Beograd

3. Dušan Berisavljević, doc. dr, član

Rudarsko-geološki fakultet, Beograd

Datum odbrane:

10. VII 2023.

APSTRAKT

Problem odabira parametara čvrstoće na smicanje intenzivno ispucale, izotropne stenske mase, koja se može smatrati kontinuumom, predstavlja jedan od najvažnijih i najizazovnijih koraka pri analizama stabilnosti kosina, tunela, temelja i drugih objekata koji se izvode u stenskoj masi. Stoga, za potrebe izrade završnog rada master akademskih studija studijskog programa Geotehnika, na Rudarsko-geološkom fakultetu, izvršena je uporedna analiza dva klasifikaciona sistema koji nude mogućnost određivanja parametara smičuće čvrstoće stenske mase. Osnovni cilj pisanja ovog rada je detaljna analiza dva klasifikaciona sistema koji su široko rasprostranjeni u geotehničkoj praksi, GSI i Q, odnosno njihovih mogućnosti i ograničenja primene, parametara koji se koriste prilikom klasifikacije, prednosti i mana, kao i postupaka za dobijanje Mohr-Coulombovih parametara smičuće čvrstoće, c i φ. Takođe, urađen je i praktični primer klasifikovanja stenske mase prema GSI, Q i Q-slope sistemu, odabir MC parametara i analiza stabilnosti kosine izvedene u intenzivno ispucalim i izmenjenim dijabazima, pored regionalnog puta Valjevo-Bajina Bašta, na lokalitetu Debelo Brdo. Metodološki pristup koji je korišćen za rešavanje postavljenog problema je analiza strukturnog sklopa terenskim detaljnim inženjerskogeološkim kartiranjem i fotogrametrijskom analizom kosine, kao i kabinetska obrada prikupljenih podataka.

Krajnji zaključak izvedenih istraživanja je da pristup Q klasifikacije daje nešto niže vrednosti ugla smičuće otpornosti φ , a značajno više vrednosti kohezije *c*, od pristupa GSI klasifikacije. Faktor sigurnosti kosine je više nego dvostruko veći prilikom korišćenja MC parametara iz Q, nego iz GSI klasifikacije. Takođe, zaključeno je da je kod Q pristupa jednostavnije definisanje ulaznih parametara i omogućeno je vršenje proračuna i procena parametara direktno na terenu, bez upotrebe računarskih programa. Negativna strana Q pristupa je nedovoljno uzimanje u obzir naponskog stanja koje veoma utiče na vrednosti parametara čvrstoće, kao i nepodobnost primene na kosinama. S druge strane, GSI pristup u obzir uzima veliki broj faktora, poklanja odgovarajuću pažnju naponskom stanju, pogodan je za korišćenje

kako u podzemnim objektima tako i na površinskim kopovima i kosinama, zasnovan je na eksperimentalnim opažanjima i ima dugu tradiciju primene. Njegova glavna mana je veliki stepen nepouzdanosti definisanja ulaznih parametara (pogotovo faktora oštećenja D), što može obeshrabriti njegovu primenu kod neiskusnijih inženjera.

Ključne reči: stenska masa, parametri smičuće čvrstoće, klasifikacije stenske mase, MC kriterijum loma, analiza stabilnosti

SADRŽAI	
SADILLAJ	

1. UVOD	1
2. OPŠTE O KLASIFIKACIONIM SISTEMIMA STENSKIH MASA	3
3.GSI KLASIFIKACIJA I HB KRITERIJUM LOMA	4
3.1. Kvantifikovani GSI dijagrami	6
3.2. GSI dijagrami za različite vrste stenskih masa	9
3.3. HB kriterijum loma	13
4. Q KLASIFIKACIONI SISTEM	23
4.1. Procena parametara Q klasifikacije	24
4.2. Q-slope sistem	33
5. PRIMENA KLASIFIKACIONIH SISTEMA ZA DEFINISANJE MC	
PARAMETARA STENSKE MASE	37
5.1. Primena GSI i GHB kriterijuma loma za definisanje MC parametara	38
5.2. Primena Q klasifikacije za definisanje MC parametara	41
6. PRAKTIČAN PRIMER	44
6.1. Rezultati inženjerskogeološkog kartiranja kosine	46
6.1.1. Procena GSI vrednosti	52
6.1.2. Procena Q vrednosti	54
6.2. Rezultati fotogrametrijske analize kosine	56

8. ZAKLJUČAK

LITERATURA

UVOD

Sve stenske mase u prirodi predstavljaju DIANE materijal, odnosno diskontinualnu, heterogenu, anizotropnu, nelinearno elastičnu sredinu. Stoga, proučavanje mehaničkog ponašanja stenske mase predstavlja zahtevan i složen zadatak, koji sa sobom nužno povlači izvesne aproksimacije i uprošćavanja. Jedna od najčešće korišćenih aproksimacija je pretpostavka da se intenzivno ispucala, izotropna i homogena stenska masa može posmatrati kao hipotetička, ekvivalentna kvazikontinualna sredina. Takav uprošćen pristup sa sobom nužno povlači problem definisanja parametara smičuće čvrstoće ispucale stenske mase, neophodnih za sprovođenje analiza stabilnosti kosina, tunelskih otvora, nosivosti temelja i dr. Uzimanje neporemećenih uzoraka iz terena i njihovo laboratorijsko ispitivanje je nemoguće, a izvođenje in situ opita u razmeri 1:1 je veoma skupo i komplikovano. U svakodnevnoj geotehničkoj praksi, odabir parametara smičuće čvrstoće stenske mase se vrši pomoću klasifikacionih sistema, posebnih grupa iskustveno nastalih postupaka, koji se koriste prilikom projektovanja u stenskom materijalu, i koji se relativno jednostavno mogu sprovesti na terenu. U domaćoj geotehničkoj praksi, odabir parametara čvrstoće na smicanje stenske mase se vrši gotovo isključivo koristeći GSI klasifikaciju i prateći generalizovani Hoek-Brown-ov kriterijum loma, dok se postupak pomoću Q klasifikacije ređe upotrebljava. Upravo je i osnovni cilj pisanja rada prezentovanje retko korišćenih jednačina za definisanje parametara smičuće čvrstoće iz Q klasifikacije, testiranje njihove upotrebljivosti i poređenje dva klasifikaciona sistema i rezultata (parametara smičuće čvrstoće) koje oni daju.

Pitanje odabira parametara je obrađeno na sveobuhvatan način, uvažavajući sve relevantne činioce koji su od uticaja na rešenje postavljenog problema. Kako bi se problemu prišlo na celovit i detaljan način, završni rad ima sledeću strukturu: u drugom poglavlju su date opšte napomene o klasifikacionim sistemima koji se upotrebljavaju u mehanici stena. Treće poglavlje detaljno obrađuje GSI klasifikacioni sistem i prateći Hoek-Brown-ov kriterijum loma. Q klasifikacioni sistem i njegova modifikacija za upotrebu na kosinama Q-slope su prikazani u poglavlju 4. U petom poglavlju je prikazan postupak dobijanja Mohr-Coulombovih parametara smičuće čvrstoće upotrebom pomenutih klasifikacionih sistema. Šesto poglavlje prikazuje opšte podatke o kosini na kojoj je izvršen praktičan primer odabira parametara, rezultate terenskog, detaljnog inženjerskogeološkog kartiranja i fotogrametrijske analize kosine. Poglavlje od suštinskog značaja, sedmo, bavi se rešavanjem postavljenog osnovnog problema odabira parametara na posmatranoj kosini i analizom stabilnosti iste. Osmo poglavlje predstavlja zaključak rada, sa odgovorima na osnovne ciljeve postavljene u apstraktu.

Prilikom pisanja rada korišćeni su i odgovarajući softverski alati: AutoCad za grafičku obradu priloga, CloudCompare i DSE (Discontinuity Set Extractor) za analizu strukturnog sklopa na oblaku tačaka, RocData za odabir parametara čvrstoće smicanja stenskih masa na osnovu rezultata laboratorijskih ispitivanja (Point Load Test) i detaljnog inženjerskogeološkog kartiranja kosine i Slide2, za globalnu analizu stabilnosti kosine. Rad u pomenutim programima je izvršen u računarskoj učionici geološkog odseka, na rudarsko-geološkom fakultetu. Snimanje kosine, dobijanje oblaka tačaka i rad u softverima CloudCompare i DSE je obavio mentor, doc. dr. Zoran Berisavljević, na čemu mu se srdačno zahvaljujem, kao i na pomoći prilikom kartiranja kosine.

U nastavku teksta biće korišćene skraćenice: HB za Hoek-Brown-ov kriterijum loma i MC za Mohr-Coulomb-ove parametre čvrstoće.

2. OPŠTE O KLASIFIKACIONIM SISTEMIMA STENSKIH MASA

Klasifikacija stenske mase predstavlja procenu kvaliteta stenske mase na osnovu nekog unapred definisanog kriterijuma, pri čemu se određene osobine koje su od značaja za njeno mehaničko ponašanje razvrstavaju u klase. Osobine koje se najčešće određuju i kvantifikuju, te razvrstavaju u klase, su intaktne karakteristike i karakteristike pojedinačnih pukotina, familija i sistema pukotina. Klasifikacioni sistemi su posebne grupe iskustveno nastalih postupaka koji se koriste prilikom projektovanja u stenskoj masi i koji moraju imati prihvatljiv stepen neizvesnosti (Berisavljević i dr, 2021). Prema Einstein i dr. (1979), klasifikacioni sistemi se mogu uspešno primeniti samo u slučaju da ispunjavaju sledeće zahteve:

- Moraju proizvesti ekonomično ali stabilno rešenje;
- Moraju biti primenljivi na razmatrani slučaj;
- Prilikom razmatranja neke pojave moraju uzeti u obzir sve značajne činioce, i pritom biti relativno jednostavni za upotrebu;
- Moraju biti sveopšte primenljivi na određenu grupu problema.

Veliki broj klasifikacionih sistema je nastao na bazi iskustva njihovih autora sa velikih projekata u građevinarstvu, i to pre svega u tunelogradnji, za potrebe projektovanja podgradnih sistema (na primer RMR i Q). U literaturi se može naći ogroman broj klasifikacionih sistema, međutim najširu primenu imaju:

- GSI i njegove modifikacije (brojne varijante kvantifikovanih GSI dijagrama i dijagrama za različite litološke vrste stenskih masa, primena za klasifikaciju iskopa, CGSI)
- RMR i njegove modifikacije (ARMR, MRMR, SMR, RMQR)
- ➢ Q i Q_{slope} sistem
- ➤ RMi

S obzirom da je tema ovog rada primena GSI i Q klasifikacije za dobijanje parametara smičuće čvrstoće stenske mase, neće biti detaljnije razmatrani RMR i RMi, već samo GSI i Q.

Klasifikacioni sistemi ne uzimaju u obzir pojave vremenski zavisnih deformacija stenske mase, poput bubrenja i fizičko-hemijskog razaranja, kao i veličine dobijene merenjem deformacionih karakteristika stenske mase. Ovo su njihovi glavni nedostaci, te su iz tih razloga nastale modifikacije osnovnih oblika klasifikacionih sistema.

3. GSI KLASIFIKACIJA I HB KRITERIJUM LOMA

GSI (Geological Strength Index – geološki indeks čvrstoće) predstavlja jedan od najkorišćenijih klasifikacionih sistema, koji svoju popularnost duguje činjenici da predstavlja sastavni deo opšteprihvaćenog Hoek-Brown-ovog kriterijuma loma za stensku masu, o kojem će biti više reči u poglavlju 3.3. Prema Stille i Palmstrom (2003), GSI ne predstavlja klasifikacioni sistem već samo iskustvenu veličinu koja se koristi kao parametar HB kriterijuma loma. Međutim, u ovom radu neće biti usvojeno pomenuto stanovište, nego će se smatrati da GSI predstavlja klasifikacioni sistem ravnopravan drugima. GSI uzima u obzir veličinu blokova i njihovu međusobnu uzglobljenost, kao i stanje diskontinuiteta. Njegova osnovna svrha je da se parametri HB kriterijuma loma dobijeni za monolit, redukuju na parametre ispucale stenske mase. GSI se može koristiti za klasifikaciju stenske mase koja predstavlja HB materijal: ispucala, homogena i izotropna stenska masa, sačinjena od međusobno uzglobljenih blokova. Pretpostavka o izotropnosti se može smatrati opravdanom kod stenskih masa sa četiri ili više familija pukotina (Hoek i Brown, 1980a).

GSI se može odrediti na prirodnim izdancima, čelu tunelskih iskopa, licu kosine ili jezgru istražne bušotine. Određivanje GSI na jezgru istražne bušotine je težak i nezahvalan posao, s obzirom da je veoma izazovno proceniti uzglobljenost blokova i stanje pukotina iz jezgra bušotine, pogotovo imajući u vidu da kvalitet bušenja ima presudan uticaj na kvalitet izvađenog jezgra.

Osnovni GSI dijagram se sastojao od četiri strukturne kategorije prikazane na vertikalnoj osi, koje zavise od blokovske izdeljenosti i međusobne uzglobljenosti stenske mase. Na horizontalnoj osi je prikazano stanje zidova pukotina, u pet kategorija. Dijagram je prikazan na slici 3.1.

í	
GEOLOŠKI INDEKS ČVRSTOĆE Na osnovu karakteristika stenske mase odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI) pomoću kontura. Ne pokušavati biti previše precizan. Bolje je pretpostaviti raspon vrednosti za GSI između 36 i 42 nego tvrditi da on iznosi GSI=38.	STANJE ZIDOVA PUKOTINA STANJE ZIDOVA PUKOTINA Veoma hrapave, sveže neizmenjene površine veoma hrapave, sveže neizmenjene površine hrapave, blago izmenjene površine, sa gvožđevitim fiekama UMEREN glatke, umereno izmenjene površine sa čvrstom ispolirane, veoma izmenjne površine sa čvrstom ispolirane, veoma izmenjne površine sa čvrstom ispolirane, veoma izmenjne površine sa mekom glinovitom ispunom
BLOKOVSKI IZDELJENA - veoma dobro uzglobljena neoštećena stenska masa koja se sastoji od kockastih fragmenata oivičenih sa tri upravne familije pukotina	TA STENSKE MASE
VEOMA BLOKOVSKI	WEIN 00 /////

Slika 3.1. Osnovni GSI dijagram (Hoek i Brown, 1997, iz Berisavljević i dr, 2021)

Prema osnovnom dijagramu koji su objavili Hoek i Brown (1997), vrednost GSI se kretala u rasponu 10-80. U narednoj varijanti GSI dijagrama (Hoek i Marinos, 2000) dodate su dve nove strukturne kategorije, kojima se u razmatranje uzimaju masivne i tektonski oštećene i intenzivno smicane stenske mase. Po korigovanom dijagramu, vrednost GSI varira u granicama 5-95. Novi dijagram je prikazan na slici 3.2. Ipak, Hoek i dr. (2013) ističu da GSI

klasifikacija ne bi trebalo da se primenjuje za intaktne i masivne, kao i za prethodno smicane, transportovane i intenzivno izmenjene stenske mase, te uklanjaju gornju i donju strukturnu kategoriju i vraćaju se prvobitnom GSI dijagramu (slika 3.1.)

GEOLOŠKI INDEKS ČVRSTOĆE Na osnovu karakteristika stenske mase odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI) pomoću kontura. Ne pokušavati biti previše precizan. Bolje je pretpostaviti raspon vrednosti za GSI između 33 i 37 nego tvrditi da on iznosi GSI=35. Dijagram se ne odnosi na strukturno kontrolisane nestabilnosti. U situacijam kada su oslabljene planarne površi prisutne i nepovoljno orijentisane u odnosu na iskop one najviše utiču na stabilnost. Smičuća čvrstoća diskontinuiteta u stenskoj masi koja je podložna raspadanju se može smanjiti tokom vremena. U slučaju rada sa stenama koje se nalaze u umerenoj ili veoma lošoj ENUTO udesno je moguće u slučaju mokrih uslova.	/RLO DOBAR eoma hrapave, sveže neizmenjene površine	DOBAR Irapave, blago izmenjene površine, sa vožđevitim flekama	JMEREN glatke, umereno izmenjene površine	.OŠ spolirane, veoma izmenjne površine sa čvrstom spunom od nezaobljenih fragmenata	/EOMA LOŠ spolirane, veoma izmenjne površine sa mekom Jinovitom ispunom
kategoriji pomeranje za jednu kategoriju K udesno je moguće u slučaju mokrih uslova. Uticaj podzemne vode se uzima u obzir () prilikom analize stabilnosti.	VRLO D(veoma h	DOBAR hrapave, qvožđevi	UMEREI glatke, u	LOŠ ispoliran ispunom	VEOMA ispoliran glinovito
STRUKTURA	SMANJEN	JE KVALI	TETA PUK	OTINA I	
INTAKTNA ILI MASIVNA - masivna stenska masa sa malim brojem diskontinuiteta na velikom	90	//		N/A	N/A

Slika 3.2. GSI dijagram sa šest strukturnih kategorija (Hoek i Marinos, 2000, iz Berisavljević *i dr*, 2021)

3.1. Kvantifikovani GSI dijagrami

Jedan od osnovnih problema GSI klasifikacije je njen opisni karakter, gde veliku ulogu igra subjektivnost koja onemogućava pouzdanu primenu kod pojedinih neiskusnih korisnika. Pritom, postojanje kontura, odnosno izolinija na dijagramu može korisniku dati lažan osećaj objektivnosti dok zapravo određivanje GSI iziskuje neophodne aproksimacije i subjektivnost. Da bi se pomenuti problem prevazišao, u upotrebu su uvedeni kvantifikovani GSI dijagrami, koji omogućavaju relativno precizno i objektivno definisanje geološkog indeksa čvrstoće.

Prednosti kvantifikovanog pristupa navode Cai i dr. (2004): "...Stoga, kvantitativni pristup dodat GSI sistemu obezbeđuje način za konzistentnu karakterizaciju stenske mase i poboljšava korisnost GSI sistema." Za razliku od ovih autora, Yang i Elmo (2022) ukazuju da su parametri GSI klasifikacije suštinski kvalitativne prirode i da je iluzorno i nesvrsishodno kvantifikovati ih, te da se kvantifikacijom ne postiže veća tačnost prilikom određivanja GSI. Ipak, korisno je prikazati neki od kvantifikovanih GSI dijagrama, s obzirom da mogu poslužiti u praksi, pre svega mlađim i neiskusnim inženjerima.

Kvantifikovani dijagrami su brojni i mahom zasnovani na parametrima dobijenim iz RMR, Q i RMi klasifikacije. U nastavku je prikazan jedan od najčešće korišćenih kvantifikovanih dijagrama, razvijen od strane Hoek i dr. (2013). Struktura stenske mase se kvantifikuje pomoću indeksa kvaliteta stenske mase RQD, dok se parametar Jcond⁸⁹ iz RMR klasifikacije koristi za kvantifikovanje stanja pukotinskih površi. Jcond⁸⁹ predstavlja zbir broja bodova za kontinuitet, zev, hrapavost, izmenu i ispunu pukotina iz verzije RMR klasifikacije iz 1989. god. (Bieniawski, 1989). Hoek i dr. (2013) navode da se kvantifikovani dijagram (slika 3.3.) može korsititi za procenu GSI u tunelima prečnika do 10 m i kosinama ne višim od 20 m. Pored dijagrama, u upotrebi je i formula:

$GSI = 0,5RQD + 1,5Jcond_{89}$ (1)

Hoek i dr. (2013) ističu da njihov kvantitativni GSI dijagram ima dve značajne mane. Prva je da u obzir uzima empirijsku vrednost kvaliteta zidova pukotina a ne fizičku vrednost dobijenu merenjem rezidualne smičuće čvrstoće pukotine. Druga je da se za procenu GSI koristi RQD, koji ne uzima u obzir odnos veličine bloka i dimenzija iskopa, što je od presudnog uticaja na to da li stensku masu posmatramo kao kontinuum ili diskontinuum. Iz tog razloga je i uvedeno ograničenje upotrebe na tunele prečnika do 10 m i kosine ne više od 20 m.

GEOLOŠKI INDEKS ČVRSTOĆE						
Na osnovu karakteristika stenske mase odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI). Alternativno, na osnovu RQD vrednosti i kvaliteta pukotina (Bieniawski, 1989), proceniti GSI kao GSI = 0,5RQD + 1,5Jcond89, na osnovu vrednosti na vertikalnoj i horizontalnoj osi.						
Za msivne intaktne stene sa GSI>75 proveriti mogućnost ljuskanja. Za stenu sa GSI>75 i pukotinama na velikim rastojanjima dominiraju strukturni lomovi i GSI ne treba koristiti.	VEOMA DOBAR	DOBAR	UMEREN	LOŠ	VEOMA LOŠ	

Slika 3.3. Kvantifikovani GSI dijagram, modifikovano prema Hoek i dr. (2013)

3.2. GSI dijagrami za različite vrste stenskih masa

Flišni sedimenti predstavljaju sekvence finozrnih (glinci, laporci, siltiti i šejlovi) i grubozrnih (peščari, konglomerati i krečnjaci) sedimenata koje se često međusobno smenjuju na malom upravnom rastojanju. Fliševi su mahom intenzivno ispucali, izrasedani, ubrani i navlačeni, te stoga zadaju velike probleme pri usecanju kosina i tunela. Iz tog razloga, uvedena je posebna varijanta GSI dijagrama namenjena flišnim sedimentima, razvijena od strane Marinos i Hoek (2001), koja je pretrpela nekoliko izmena i čije je najnovije izdanje (Marinos, 2017) prikazano na slici 3.4.

GI	EOLOŠKI INDEKS ČVRSTOĆE (GSI) ZA HETEROGENE FLIŠNE STENSKE MASE						
			67	e?	Ĕ	24	2
L		≤	5	č		55	12
		<u>∠</u>	2		5	5 승	5
15e	ieterogene stenske mase su one kod kojh se smenjuju slojevi različitih Boloških sastava sa Izraženim razlikama u čvrstoći, Kod	E	5	2	8	2.8	8 E
154	läne sekvence, Epične heterogene stenske mase, smene se sastole od peščara i slitita, Laminirani gilodi mogu takođe bili prisutni,	<u>Q</u>	E	8		2.2	÷ 2
No	la osnova orisa litologile, strukture i stanla zidova diskontisulteta (naročito slohih površi), odabrati odpovaraluće polje na	¥Ι	7	•	é.	6.9	6.5
-6	Concern: Odable strukture toshe de se resplue na tektooskel editedeoreti stenske mass (nanditetens, della line oditetens	26	Ĕ	5 -	<u>.</u>	85	6.5
00	pagramo, coarde artaktare treba da se zasnira na tektoriskoj ostecentest steniske mase (neostecena, bejinjeno ostecena,	a 10	.62	분류	2	88	22

N/A Geološki nemoguća kombinacija. Izvan osenčenih delova moguće je definisati stensku masu, ali su ove pojave retke

—— Smer povećanja tektonske oštećenosti stenske mase za odgovarajuću litologiju

Slika 3.4. GSI dijagram za flišne tvorevine (Marinos 2017, iz Berisavljević i dr, 2021)

U ovom slučaju napravljen je izuzetak, s obzirom da flišni sedimenti poseduju izrazitu strukturnu anizotropiju, a jedan od osnovnih uslova koje stenska masa treba da ima da bi bila podvrgnuta osnovnoj GSI klasifikaciji je izotropnost. Fliš je podeljen u 11 kategorija, pri čemu je na vertikalnoj osi uzglobljenost blokova originalnog GSI dijagrama zamenjena tektonskom oštećenošću, dok horizontalna osa zadržava osnovni princip kvaliteta zidova pukotina. Svaku od 11 kategorija karakteriše određeni stepen tektonske oštećenosti i prisustva sitnozrne i

grubozrne komponente, pri čemu se sadržaj prašinaste i glinovite frakcije povećava sa porastom tektonske oštećenosti. Kategorije su podeljene u dve kolone, levu u kojoj je peščar dominantan u odnosu na siltit (alevrolit) ili su jednako zastupljeni, i desnu u kojoj sitnozrna komponenta preovladava. Flišne sekvence kartirane na terenu uglavnom "padaju" na osenčene površine dijagrama, sa označenim tipovima fliša, dok su pojave stenske mase izvan osenčenih delova retke. Na dijagramu su naznačene zone sa geološki nemogućim kombinacijama (N/A).

U nastavku teksta prikazani su GSI dijagrami za krečnjake, laminirane molasne sedimente i gnajs i petrografski slične stene (Marinos, 2010). Dijagrami za krečnjake i molasne sedimente su slični dijagramima za fliš, a kod oba je akcenat stavljen na slojevitost kao dominantnu strukturnu karakteristiku. Prikazani su na slikama 3.5. i 3.6. Dijagram za gnajs (slika 3.7.) ima šest strukturnih kategorija, u zavisnosti od stepena uzglobljenosti blokova stenske mase, dok je u horizontalnom pravcu umesto stanja pukotina, relevantan stepen raspadnutosti. Za razliku od do sada prikazanih GSI dijagrama, dijagram za gnajs poseduje zakrivljene linije. Može se primeniti i za granitne stene, koje pripadaju tipovima od "intaktne" do "dezintegrisane" stenske mase.

GEOLOŠKI INDEKS ČVRSTOĆE ZA KREČNJAČKU STENSKU MASU Na osnovu karakteristika stenske mase (narošito slojevitosti) odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI Ne pokušavati biti previše precizan. Bolje je pretpostaviti raspon vrednosti za GSI između 33 i 37 nego tvrditi da on iznosi GSI=35. Dijagram se ne odnosi na strukturno kontrolisane nestabilnosti. U situacijam kada su oslabljene planarne površi prisutne i nepovoljno orijentisane u odnosu na iskop one najviše utiču na stabilnost (obratiti pažnju na tipove B i C). Smičuća čvrstoća diskontinuiteta u stenskoj masi se može smanjiti usled prisustva vode. U slučaju rada sa stenskom masom koje se nalaze u umerenoj ili veoma lošoj kategoriji stanja zidova pukotina pomeranje za jednu kategoriju udesno je moguće u slučaju mokrih uslova. Uticaj podzemne vode se uzima u obzir prilikom analize stabilnosti.	STANJE ZIDOVA DISKONTINUITETA (Uglavnom slojevitost)	VRLO DOBAR veoma hrapave, sveže neizmenjene površine	DOBAR hrapave, blago izmenjene površine, sa gvožđevitim flekama	UMEREN glatke, umereno izmenjene površine	 LOŠ Ispolirane, veoma izmenjne površine sa čvrstom ispunom od nezaobljenih fragmenata 	VEOMA LOŠ ispolirane, veoma izmenjne površine sa mekom glinovitom ispunom
TIP A. Neoštećen krečnjak sa pukotinama na velikom rastojanju (masivan), sa dobro uzglobljenim kockastim blokovima koji su ograničeni sa tri familije pukotina tri familije pukotina	8 3 2 2 3 III	80	A-B			
TIP D. Blokovski izdeljen krečnjak, dobro uzglobljen sa nepravilnim blokovima koje formiraju četiri ili više familija pukotina	OBLJAVANJA FR		60 D 50			
TIP E. Oštećena nabrana stenska masa, tapkoslojevita, sa pepravilnim blokovima	nZGL	17	//	ah I	11	

Slika 3.5. GSI dijagram za krečnjake (Marinos, 2010, iz Berisavljević i dr, 2021)

GEOLOŠKI INDEKS ČVRSTOĆE ZA MOLASNE SEDIMENTE (Uglavnom se primenjuje za površinske iskope)		es a		es	sa
Na osnovu karakteristika stenske mase (narošito slojevitosti) odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI Ne pokušavati biti previše precizan. Bolje je pretpostaviti raspon vrednosti za GSI između 33 i 37 nego tvrditi da on iznosi GSI=35. Dijagram se ne odnosi na strukturno kontrolisane nestabilnosti. U situacijam kada su oslabljene planarne površi prisutne i nepovoljno orijentisane u odnosu na iskop one najviše utiču na stabilnost. Smičuća čvrstoća diskontinuiteta u stenskoj masi se može smanjiti usled prisustva vode. U slučaju rada sa stenskom masom koje se nalaze u umerenoj ili veoma lošoj kategoriji stanja zidova pukotina pomeranje za jednu kategoriju udesno je moguće u slučaju mokrih uslova. Uticaj podzemne vode se uzima u obzir prilikom analize stabilnosti.	STANJE ZIDOVA DISKONTINUITETA (Uglavnom slojevitost) VRLO DOBAR veoma hrapave, sveže neizmenjene površine	DOBAR hrapave, blago izmenjene površine, s gvožđevitim flekama UMEREN	glatke, umereno izmenjene površine	LOS ispolirane, veoma izmenjne površine čvrstom ispunom od nezaobljenih fragmenata	VEOMA LOŠ ispolirane, veoma izmenjne površine mekom glinovitom ispunom
M 3. Debeloslojeviti, blokovski izdeljeni peščari ili dobro cementovani konglomerati. Glinoviti film koji može biti prisutan na zidovima pukotina ne utiče na čvrstoću usled dobre uzglobljenosti stenske mase. Kod plitkih tunela ili kosina ravni slojevitosti mogu izazvati strukturne nestabilnosti ukoliko su nepovoljno orijentisane	70	МЗ			//
M 4. Peščari ili dobro cementovani konglomerati sa tankim	ninirani ti šejl rima	50 M4 M5 40	M6		

Slika 3.6. GSI dijagram za molasne sedimente (Marinos, 2010, iz Berisavljević i dr, 2021)

Postoji i mogućnost primene GSI dijagrama za kategorizaciju iskopa (Tsiambaos i Saroglou, 2010). Stenske mase su podeljene u četiri kategorije: iskop upotrebom miniranja; hidrauličkog čekića; riperovanjem; bagerom sa kašikom. Koji tehnološki postupak će biti primenjen zavisi od vrednosti GSI stenske mase i korigovanog indeksa tačkaste čvrstoće *Is50*. Za stene sa većim GSI koristi se miniranje, dok sa opadanjem GSI u upotrebu ulaze hidraulički čekić, potom riperovanje, i na kraju, za stene sa najmanjim GSI, iskop bagerom sa kašikom.

GEOLOŠKI INDEKS ČVRSTOĆE ZA GNAJS I
PETROGRAFSKI SLIČNE STENE

Na osnovu karakteristika stenske mase (narošito slojevitosti) odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI Ne pokušavati biti previše precizan. Bolje je pretpostaviti raspon vrednosti za GSI između 33 i 37 nego tvrditi da on iznosi GSI=35. Dijagram se ne odnosi na strukturno kontrolisane nestabilnosti. U situacijam kada su oslabljene planarne površi prisutne i nepovoljno orijentisane u odnosu na iskop one najviše utiču E na stabilnost. Smičuća čvrstoća diskontinuiteta u stenskoj masi se može smanjiti usled prisustva 🞽 om koja se Rompletno Rompl vode. U slučaju rada sa stenskom masom koja se nalazi u umereno, veoma ili jednu 👌 raspadnutoj kategoriji pomeranje za kategoriju udesno je moguće u slučaju mokrih uslova. Pritisak podzemne vode se uzima u obzir prilikom analize od stabilnosti. Dijagram se može primeniti i za granitne stene u PEN slučaju da pripadaju tipovima od "intaktne" do "dezintegrisane" stenske mase STE

σ_{ci} i m, vrednosti se brzo smanjuju ali fragmenti proces fragmenti SU čemu 9 E. rt s 췅 unutrašnjost stenske mase zahvatilo unutrašnjost stenske mase. trosna. otina ε znakova raspadanja ili su zidovima većih diskontinuiteta ŝ puk raspadnuta ovima potpuno raspadni struktura i tekstura unutras II DELIMIČNO RASPADNUTA 옭 RASPADNUTA RASPADNUTA POTPUNO RASPADNUTA 2 obuhvatilo k zahvatio 9 primarna masa borecane na borecane na borecane na borecane na borecane su presidenja tek u presidenja tek u presidenje je o su trošni borecane je o su trošni borecane je o su trošni borecane je za bor lokalizovane na V POTPU Stenska očuvane uvane

izmene

delimične

SVEŽA

INTAKTNA ILI MASIVNA

Intaktna stenska masa sa malim brojem diskontinuiteta na veliko rastojanju

BLOKOVSKI IZDELJENA dobro uzglobljena neoštećena stenska masa koja se sastoji od kockastih fragmenata ograničenih sa tri upravne familije pukotina

STRUKTURA

VEOMA BLOKOVSKI IZDELJENA uzglobljena delimično oštećena stenska masa koja se sastoji od uglastih fragmenata oivičenih sa četiri ili više familija pukotina

BLOKOVSKI IZDELJENA / OŠTEĆENA ubrana i/ili izrasedana stenska masa koja se sastoji od uglastih blokova oivičenih sa velikim brojem familija pukotina

DEZINTEGRISANA

slabo uzglobljena, veoma oštećena stenska masa koja se sastoji od uglastih i zaobljenih fragmenata

LAMINIRANA / SMICANA odsustvo blokovske izdeljenosti usled

veoma bliskog rastojanja slabih diskontinuiteta ili škriljavosti

Slika 3.7. GSI dijagram za gnajs i petrografski slične stene (Marinos, 2010, iz Berisavljević i dr, 2021)

3.3. HB kriterijum loma

Originalni Hoek-Brown-ov kriterijum loma (Hoek i Brown, 1980a) je inspirisan Grifitovom teorijom krtog loma i njegovom analitičkom paraboličkom anvelopom loma (Griffith 1921, 1924), a odnosi se na intaktnu stenu i predstavljen je sledećom zavisnošću u polju glavnih napona (grafički prikazi anvelopa loma dati su na slikama 3.8 i 5.1.):

$$\sigma_1 = \sigma_3 + \sigma_{ci} \left(m_i \frac{\sigma_3}{\sigma_{ci}} + 1 \right)^{0,5} \tag{2}$$

Gde σ_{ci} predstavlja jednoaksijalnu čvrstoću na pritisak intaktne stene, m_i je Hoek-Brown-ova materijalna konstanta za intaktnu stenu, a σ_1 i σ_3 su veći i manji efektivni glavni naponi u trenutku loma, respektivno. Parametar σ_{ci} se može dobiti iz opita jednoaksijalne kompresije na prethodno obrađenim, cilindričnim uzorcima, ili iz opita triaksijalne kompresije

kao odsečak na osi većeg glavnog napona σ_1 u slučaju da je manji glavni napon, σ_3 , jednak nuli. Alternativno, u slučaju nedostatka odgovarajućih laboratorijskih ispitivanja, σ_{ci} se može proceniti iz Point Load Test-a ili na terenu, pomoću Šmitovog čekića.

Materijalni parametar intaktne stene m_i donekle je analogan uglu smičuće otpornosti φ kod MC kriterijuma loma i najpouzdanije se određuje fitovanjem anvelope loma dobijene iz najmanje pet opita triaksijalne kompresije na intaktnim uzorcima prečnika 50 mm, sa jednako raspoređenim nivoima bočnih napona, od nula do jedne polovine jednoaksijalne čvrstoće na pritisak (Hoek i Brown 1980b, 1997; Hoek i dr. 1995). U praksi se, usled nedostatka triaksijalnih ispitivanja čvrstoće, parametar m_i uglavnom određuje iz tabele 3.1. (Marinos i Hoek, 2000).

Anvelopa loma dobijena iz opita triaksijalne kompresije daje previše optimistične vrednosti čvrstoće na zatezanje intaktnog uzorka. Iz tog razloga, HB kriterijum loma se uglavnom koristi sa odsecanjem zatezanja, tzv. "tension cut-off". Hoek i Brown (2019) navode da vrednost čvrstoće na zatezanje intaktne stene, odnosno tension cut-off-a σ_t može da se odredi pomoću sledeće relacije:

$$\sigma_t = \frac{-\sigma_{ci}}{0,81m_i+7}$$

13

(3)

Tabela 3.1. Procenjene vrednosti parametra m_i za različite vrste stenskih masa (Marinos i Hoek 2000, iz Berisavljević i dr, 2021)

Vrsta	Klasa	Grupa	Veličina zrna	a		
stene			Grubo	Srednje	Fino	Veoma
	Klastične		Konglomera ti (21 ± 3)	Peščari 17 ± 4	Siltiti 7 ± 2 Grauva	Glinci 4 ± 2 Šejl
	Klasticiie		Breče (19 ± 5)		ke (18 ± 3)	(6 ± 2) Laporci (7 ± 2)
۳	Organogano	Karbonati	Kristalasti krečnjaci (12 ± 3)	Sparitski krečnjaci (10 ± 2)	Mikritski krečnjac i (9 + 2)	Dolomti (9 ± 3)
MENT	i hemisjke	Evaporati	Gips 8 ± 2		Anhidrit 12 \pm 2	
SEDI		Organske	Kreda 7 ± 2			
ZFNE	Bez folijacije	(masivne)	Mermer 9 ± 3	Hornfels (19 ± 4) Metapeščari (19 ± 3)	Kvarciti 20 ± 3	
AMOF	Umerena folij	acija	Migmatiti (29 ± 3)	Amfiboliti 26 ± 6	Gnajs 28 ± 5	
MET/	Izražena folija	acija		Škriljci 12 ± 3	Filiti (7 ± 3)	Argilošisti 7 ± 4
	Plutonske	Svetle	Granit 32 ± 3	Diorit 25 ± 5	Granodic (29 ± 3)	orit
		Tamne	Gabro 27 ± 3	Dolerit (16 ± 5)	Norit 20 ± 5	
SKE	Hipoabisalne			Porfiriti (20 ± 5)	Dijabazi (15 ± 5)	Peridotiti (25 ± 5)
MAT	Vulkanske	Lava	Riolit (25 ± 5)	Dacit (25 ± 3)	Andezit 25 ± 5	Bazalt (25 ± 5)
MAG		Piroklasititi	Aglomerati (19 ± 3)	Vulkanska br (19 ± 5)	eča	Tuf (13 ± 5)

Hoek i Brown su proširili svoj kriterijum loma tako da obuhvata i ispucale stenske mase, a ne samo intaktne uzorke, usvajajući isti oblik paraboličke anvelope loma sa prilagođenim parametrima. Najvažnija komponenta modifikovanog HB kriterijuma loma za stensku masu je proces kojim se inženjerskogeološke opservacije na terenu koriste da redukuju otpornodeformabilne parametre intaktne stene do reprezentativnih vrednosti parametara za stensku masu (Marinos i Hoek, 2000). Napominjemo da je originalni HB kriterijum loma pretrpeo brojne promene, koje su se odnosile na odabir i prirodu parametara koji vrše redukciju čvrstoće intaktne stene na čvrstoću ispucale stenske mase. U ovom radu pomenute promene neće biti diskutovane, već će akcenat biti stavljen na najnovije verzije HB kriterijuma loma. HB kriterijum loma za stensku masu se često naziva generalizovani HB kriterijum loma i njegova najnovija verzija, usvojena od strane Hoek i dr. (2002) i Hoek i Brown (2019) glasi:

$$\sigma_1 = \sigma_3 + \sigma_{ci} \left(m \frac{\sigma_3}{\sigma_{ci}} + s \right)^a \tag{4}$$

Parametar m_i za intaktnu stenu koji figuriše u jednačini (2) zamenjen je parametrom m (u literaturi se može naći i oznaka m_b) za stensku masu. Slika 3.8.(a) prikazuje uticaj promene parametra m na anvelopu loma u polju normalizovanih glavnih napona. Smanjenje m uzrokuje smanjenje ugla nagiba anvelope loma, odnosno "frikcione" komponente čvrstoće, pri čemu je analogija sa uglom smičuće otpornosti φ MC kriterijuma loma očigledna. Parametar s predstavlja "kohezivnu" komponentu čvrstoće i ukazuje na izlomljenost stenske mase, a uticaj njegove promene na anvelopu loma prikazuje slika 3.8.(b). Smanjenje parametra s uzrokuje smanjenje čvrstoće na pritisak stenske mase na osi normalizovanog većeg glavnog napona. Za intaktni uzorak bez pukotina, s = 1, a čvrstoća na pritisak stenske mase σ_c jednaka je čvrstoći na pritisak intaktnog uzorka σ_{cl} . Za intenzivno ispucalu stenu s = 0 i $\sigma_c = 0$. Variranje parametra a prikazano je na slici 3.8.(c). Eksponent a kontroliše stepen zakrivljenosti anvelope loma, čineći parabolu za a = 0,5 i pravu liniju za a = 1. Jednačine koje su dali Hoek i dr. (2002) i Hoek i Brown (2019) ograničavaju vrednosti parametra a između 0,5 i 0,6, za većinu stenskih masa.

Pretpostavljajući da je $\sigma_3 = 0$ u jednačini (4), može se dobiti jednoaksijalna čvrstoća na pritisak stenske mase σ_c korišćenjem sledećeg izraza:

$$\sigma_c = \sigma_{ci} \times s^a \tag{5}$$

Hoek i dr. (2002) daju sledeću vrednost čvrstoće na zatezanje stenske mase pretpostavljajući da je $\sigma_1 = \sigma_3$ u jednačini (4):

$$\sigma_t = \frac{-\sigma_{ci} \times s}{m} \tag{6}$$

(b) 5

Slika 3.8. Uticaj parametara m, s i a na anvelopu loma generalizovanog HB kriterijuma loma, koristeći: a) s = 1, a = 0,5; b) m = 20, a = 0,5; c) m = 20, s = 1.0. Vertikalni segment anvelope loma u domenu napona zatezanja predstavlja tension cut-off. Preuzeto iz Renani i Cai (2021).

Da bi se kriterijum loma uspešno koristio, mora se povezati sa inženjerskogeološkim ispitivanjem stenske mase na terenu. Stoga, od neprocenjive je važnosti kvalitetno prikupljanje terenskih podataka i njihova kvantifikacija koji će omogućiti obavljanje redukcije čvrstoće intaktnog uzorka na čvrstoću stenske mase. Pritom, u obzir se uzimaju dva aspekta stanja stenske mase u terenu: kvalitet stenske mase, izražen preko geološkog indeksa čvrstoće GSI i oštećenje stenske mase usled iskopa, izraženo faktorom oštećenja D. Postupak redukcije čvrstoće i odabir geotehničkih parametara stenske mase prikazan je na slici 3.9.

Parametri intaktne stene iz laboratorijskih opita *σ_{ci}, m_i*

Stanje stenskih masa iz terenskih osmatranja GSI, D

Slika 3.9. Centralna uloga HB jednačina redukcije čvrstoće u proceni geotehničkih parametara stenske mase iz intaktnih parametara i inženjerskogeoloških istraživanja na terenu, modifikovano prema Renani i Cai (2021)

Pomenute jednačine redukcije čvrstoće, odnosno zavisnosti kojima se dobijaju parametri stenske mase *m*, *s* i *a* su predložili Hoek i dr. (2002), a potvrdili Hoek i Brown (2019):

$$\frac{m}{m_i} = exp\left(\frac{GSI-100}{28-14D}\right)$$

$$s = exp \ (\frac{GSI - 100}{9 - 3D})$$

17

(7)

(8)

$$a = \frac{1}{2} + \frac{1}{6} \left(exp\left(\frac{-GSI}{15}\right) - exp\left(\frac{-20}{3}\right) \right)$$
(9)

O određivanju GSI je već bilo reči, a parametar D predstavlja faktor oštećenja stenske mase usled iskopa. Iskop stenske mase za potrebe formiranja kosina i tunela se često vrši miniranjem, pri čemu se vrši rastresanje i oštećenje u blizini površine iskopa. Takođe, uklanjanjem materijala dolazi do preraspodele napona i relaksacije stenske mase, usled čega se javlja širenje pukotina. Uticaj oštećenja usled iskopa je najintenzivniji na površini iskopa i slabi sa dubinom. Hoek i dr. (2002) uvode faktor oštećenja D i uputstva za njegovu procenu, prikazana u tabeli 3.2. Faktor D varira od 0, za neoštećene stenske mase, do 1 za potpuno oštećene partije. U opštem slučaju, efekat oštećenja i relaksacije napona igra značajniju ulogu kod kosina nego kod tunela, usled pojave nesprečenog bočnog širenja kosina. Ne postoje precizna uputstva za definisanje parametra oštećenja D, već samo preporuke pojedinih autora

(Hoek i Karzulovic, 2000; Hoek, 2012 i dr.), koje na ovom mestu neće biti razmatrane. Uticaj faktora D na vrednost geotehničkih parametara za stensku masu može biti znatan. Na primer, stenska masa sa GSI = 50 i D = 1 je slabija od one sa GSI = 30 i D = 0 (Renani i Cai, 2021).

Zavisnost parametara *m*, *s* i *a* od GSI je prikazana na slici 3.10. "Kohezivna" komponenta *s* naglo opada sa smanjenjem vrednosti GSI, što je od presudnog uticaja na činjenicu da jednoaksijalna čvrstoća na pritisak stenske mase opada na vrednost ispod 10 % od jednoaksijalne čvrstoće intaktne stene za vrednosti GSI od oko 60 i 70, za neporemećenu i potpuno poremećenu stensku masu, respektivno (Renani i Cai, 2021).

Generalizovani HB kriterijum loma je našao primenu i u određivanju deformabilnih karakteristika stenske mase, pre svih modula deformacije stenske mase *Em*. On se može odrediti poznavajući modul elastičnosti intaktne stene *Ei* i parametre GSI i *D* (prema Hoek i Diederichs, 2006):

$$Em = Ei(0,02 + \frac{1 - \frac{D}{2}}{1 + \exp\left(\frac{60 + 15D - GSI}{11}\right)})$$

(10)

(11)

Ukoliko nemamo podatke o modulu elastičnosti intaktne stene, modul deformacije stenske mase *Em* se može proceniti iz jednačine:

$$Em = 100(\frac{1-\frac{D}{2}}{1+\exp(\frac{75+25D-GSI}{11})})$$

Brown (2008) smatra da su relacije (10) i (11) nepouzdane za stensku masu sa GSI <

30.

Izgled stenskog masiva	Izgled stenskog masiva Opis stenske mase		
	Kontrolisano miniranje odličnog kvaliteta ili otkopavanje pomoću mašine za kopanje tunela (TBM) najmanje poremećuje okolnu stensku masu tunela koja se nalazi u određenom naponskom stanju.	D = 0	
	Mehanizovano ili ručno otkopavanje u stenskoj masi lošeg kvaliteta (bez miniranja) ima za posledicu minimalno oštećenje okolne stenske mase.	D = 0	
	U slučajevima gde se javljaju problemi povećanih pritisaka koji se ogledaju u većem bujanju podine, oštećenje može biti značajno ukoliko se ne postavi privremena	D = 0,5	

Tabela 3.2. Preporuke za procenu faktora oštećenja D (Hoek i dr, 2002, iz Berisavljević, 2015)

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	podgrada, kao što je prikazano na slici.	
	Miniranje vrlo lošeg kvaliteta u čvrstim stenama dovodi do značajnog lokalnog oštećenja, koje se pruža 2 do 3 m unutar okolne stenske mase.	D = 0,8
	Miniranja manjih razmera za formiranje kosina u građevinarstvu dovode do manjih oštećenja stenske mase, naročito ako se primenjuje kontrolisano miniranje kao što je prikazano na levoj strani slike. Ipak, oslobađanje napona dovodi do određenog oštećenja.	D = 0,7 Dobro miniranje D = 1,0 Loše miniranje
	Kosine velikih površinskih kopova trpe značajna oštećenja usled miniranja velikih razmera i usled oslobađanja napona nakon uklanjanja otkrivke. U pojedinim mekšim stenama moguće je otkopavanje vršiti ripovanjem i guranjem i	D = 1,0 Miniranje velikih razmera D = 0,7
	ie manii	otkonsvanja

Slika 3.10. Zavisnost parametara stenske mase m, s i a od GSI i D (Renani i Cai, 2021)

Generalizovani HB kriterijum loma zasnovan je na ograničenom broju eksperimentalnih podataka, te se pravilno može koristiti samo u određenim terenskim uslovima, u kojima su njegovi osnovni postulati zadovoljeni (Renani i Cai, 2021). Kriterijum se može koristiti za homogenu, blokovski ispucalu i izotropnu sredinu. Ovi uslovi su zadovoljeni kod stenske mase sa brojnim diskontinuitetima slične smičuće čvrstoće a različitih orijentacija, gde nema povlašćenih pravaca za razvoj loma. Lom stenske mase koja se može nazvati HB materijalom se odvija klizanjem i rotacijom intaktnih blokova nastalih presecanjem pukotina, bez značajnog učešća loma kroz intaktnu stenu. Ovo se može desiti u sredinama sa malim svestranim pritiscima, blizu površine terena. Jednačine redukcije čvrstoće su zasnovane na ispitivanjima čvrstoće Panguna andezita sa bočnim naponima $\sigma_3 < 3,5$ MPa, a primena kriterijuma je ograničena na krti lom. Povećanjem svestranih pritisaka preko određene granice, definisane Mogi linijom čija je jednačina $\sigma_3 = \sigma_1/3, 4$, dolazi do pojave duktilnog, odnosno plastičnog

loma. Stoga, korišćenje generalizovanog HB kriterijuma loma u stenskim masama izloženim visokim svestranim pritiscima, na primer u tunelima položenim duboko ispod površine terena, nije preporučljivo. Preporuka je da se prilikom triaksijalnog ispitivanja vrednost manjeg glavnog napona kreće u intervalu $0 < \sigma_3 < 0.5 \sigma_{ci}$. Konvencionalni triaksijalni aparati imaju mogućnost nanošenja svestranog bočnog pritiska od maksimalno 60 MPa što ukazuje da je moguće ispitati uzorke čija jednoaksijalna čvrstoća na pritisak ne prelazi 120 MPa (Berisavljević i dr, 2021; Hoek i Franklin, 1968).

Prosečno rastojanje diskontinuiteta mora biti značajno manje od dimenzija iskopa da bi stabilnost iskopa bila kontrolisana sveukupnim karakteristikama stenske mase, a ne kretanjem pojedinačnih blokova duž nepovoljno orijentisanih diskontinuiteta. Na primer, ovo je zadovoljeno kod tunela prečnika 10 m sa prosečnim rastojanjem pukotina koje iznosi 0,5 m (Renani i Cai, 2021). Generalizovani HB kriterijum se ne može upotrebiti za smičući lom jako raspadnute stenske mase, nalik tlu, gde je pogodnija upotreba MC kriterijuma loma (Brown, 2008) ili za smicanje pojedinačnih krupnih blokova i klinova (pogodna je upotreba BB kriterijuma loma). Prema Cai i dr. (2004), upotreba generalizovanog HB kriterijuma loma je opravdana za stenske mase sa GSI < 75, dok Renani i Cai (2021) smanjuju taj opseg na GSI \approx 30-70, kako bi opravdali izvorne ideje o izotropnosti i uzglobljenosti blokova. Berisavljević i dr. (2021) navode da je optimalni opseg GSI \approx 5-65. Jedna od osnovnih pretpostavki HB kriterijuma je da čvrstoća stena zavisi od efektivnih napona, a uticaj porne vode se može uzeti u obzir održavanjem prirodne vlažnosti uzorka pri testiranju. Kriterijum je razvijen koristeći podatke o vršnoj čvrstoći, odnosno napone pri lomu. Ipak, poznavanje postrupturnog ponašanja stenske mase može biti od značaja. Hoek i Brown (1997) navode da je veličina gubitka čvrstoće posle loma direktno proporcionalna kvalitetu stenske mase, izraženom preko GSI. Na primer, povećavanjem GSI od 30 do 50 i 75, za posledicu ima promenu postrupturnog ponašanja od savršeno plastičnog do deformacijskog omekšavanja i krtog loma, dok odnos rezidualne i vršne čvrstoće na pritisak stenske mase σc opada od 1 do 0,6 i 0, respektivno (Hoek i Brown, 1997).

Hoek (1998) navodi da raspon faktora sigurnosti kosine može biti "neprijatno velik" čak i sa kvalitetnim laboratorijskim ispitivanjem i terenskim istraživanjem, kao i da rasponi mogu postati "alarmantno veliki" sa neodgovarajućim izvođenjem i interpretacijom opita. Kao ilustracija navedena je analiza osetljivosti (slika 3.11, prema Renani i Cai, 2021) u kojoj su menjane vrednosti svakog ulaznog parametra u rasponu od 95 percentila (u pitanju je raspon vrednosti unutar kog se može naći 95 % opservacija pomenutih parametara) dok su drugi parametri ostajali isti. Može se zaključiti da nepouzdanost GSI ima daleko najveći uticaj na parametre čvrstoće stenske mase, praćeno nepouzdanostima σ_{ci} , m_i i *D*. Teorijski posmatrano, smanjenje nepouzdanosti vrednosti GSI je najefektniji način za povećanje sveukupne tačnosti i pouzdanosti proračuna stabilnosti.

Slika 3.11. Reprezentativne distribucije čvrstoće stenske mase pri σ₃ = 2 MPa. Žuti pravougaonici ukazuju na raspone vrednosti dobijene variranjem svakog parametra dok su drugi nepromenjeni (Renani i Cai, 2021)

4. Q KLASIFIKACIONI SISTEM

Q klasifikacioni sistem (Barton i dr, 1974) predstavlja, uz RMR₈₉ (Bieniawski, 1989), najkorišćeniji sistem za klasifikaciju stenskih masa u svetu. Izvorno je formulisan za potrebe izvođenja podzemnih objekata, i služi za definisanje stepena stabilnosti podzemnih iskopa, kao i za projektovanje podgradnih sistema. Q sistem je razrađen u Norveškom geotehničkom institutu (NGI) 1973. godine. Nastao je na osnovu analize više od 200 izvedenih projekata, od kojih je oko 60 % iz Norveške i Švedske, a 50 % je vezano za objekte hidrocentrala – tunele i podzemne hale. Poboljšanje sistema je izvedeno 1993. godine, od strane Grimstad i Barton (1993), kada su uključena iskustva nastala tokom projektovanja i izvođenja 1050 različitih objekata (uglavnom u Norveškoj), uključujući i saobraćajne tunele velike dužine, na velikoj dubini, poput tunela Laerdal dužine 24,5 km, na dubini 1400 m (Barton, 2015). Druga modifikacija je usledila 2002. godine (Grimstad i dr, 2002), kada je uzeto u obzir više od 900

podzemnih iskopa u Norveškoj, Švajcarskoj i Indiji.

Q klasifikacija je bazirana na osnovu iskustava stečenih prilikom izgradnje podzemnih objekata mahom u krtim, ispucalim stenskim masama, karakterističnim za Skandinaviju. Iskustva autora klasifikacije sa mekim stenama su ograničena, te se u takvim situacijama, a posebno u stenskim masama sa izraženim pojavama vremenski zavisnih deformacija, predlaže kombinovanje Q sistema sa osmatranjem konvergencija i numeričkim analizama (Berisavljević i dr, 2021).

Q sistem može da se primeni u različitim fazama projektovanja podzemnih objekata, s tim što je definisanje parametara Q klasifikacije na jezgru istražne bušotine nepouzdanije i teže nego na licu iskopa, prilikom izvođenja objekta (NGI, 2015)

Q vrednost se izračunava na osnovu sledeće jednačine:

$$Q = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{SRF}$$
(12)

Gde je, *RQD*-indeks kvaliteta stenske mase; *In*-indeks broja familija i pojedinačnih pukotina; *Jr*-indeks hrapavosti pukotinskih površi; *Ja*-indeks izmene (alteracije) pukotina; *Jw*indeks redukcije usled prisustva vode u stenskoj masi; *SRF*-faktor redukcije napona.

Tri količnika u jednačini (12) definišu sledeće faktore:

1) Stepen ispucalosti (veličina bloka) je definisan količnikom RQD/Jn. Ovaj faktor je od velikog značaja kod krtih, ispucalih stenskih masa, dok se kod mekih stena deformacije mogu javiti nezavisno od pukotina, te pomenuti faktor nema veći značaj (NGI, 2015).

2) Međublokovska smičuća čvrstoća (trenje duž diskontinuiteta) definisana je količnikom *Jr/Ja*.

3) Naponsko stanje definiše odnos faktora *Jw/SRF*. Na stabilnost podzemnih iskopa u krtim stenskim masama značajno utiče odnos intenziteta napona koji deluje na konturu iskopa i čvrstoće stenske mase. Najpovoljniji je umeren napon, dok su visoke i niske vrednosti napona manje poželjne. S tim u vezi, do ljuskanja stene može doći kada veći glavni napon dostigne vrednost od 20 % čvrstoće stenske mase na pritisak, dok do vremenski zavisnih deformacija može doći u slučaju kada tangentni napon prekorači vrednost čvrstoće na pritisak stenske mase (NGI, 2015).

Q vrednost se kreće u rasponu od 0,001 do 1000, a u slučaju ekstremnih gornjih i donjih graničnih uslova može biti veća od 1000, odnosno manja od 0,001. Visoka Q vrednost ukazuje

na stensku masu dobrih karakteristika, a niska na lošu stensku masu.

4.1. Procena parametara Q klasifikacije

RQD je definisao Deere 1963. godine (Deere, 1963), kao sumu dužina komada jezgra (ograničenih prirodnim pukotinama) dužih od 10 cm, u odnosu na dužinu intervala bušenja. Izražava se u procentima, u rasponu od 0 do 100. Zdrobljene stenske mase sa RQD = 0 bi imale vrednost Q = 0. Da bi se to izbeglo, minimalna vrednost RQD koja se primenjuje u jednačini (12) je ograničena na 10. Procena RQD iz jezgra bušotine se vrši u fazama projektovanja podzemnih objekata, dok se prilikom njihovog izvođenja može dobiti trodimenzionalni prikaz stenske mase, te se RQD može odrediti pomoću podatka o broju pukotina po m³, po formuli Palmstroma (Palmstrom, 2005):

$$RQD = 110 - 2,5Jv$$
 (13)

Gde je *Jv* broj pukotina po m³, i može se proceniti iz sledeće jednačine (Palmstrom, 1982):

$Jv = \sum_{i=1}^{n} \frac{1}{Si}$

Gde je *Si* prosečno rastojanje između pukotina u okviru i-te familije, izraženo u metrima. Na osnovu vrednosti RQD moguće je klasifikovati stensku masu u pet kategorija, kao što je prikazano u tabeli 4.1.

RQD – indeks kvaliteta stenske mase			RQD	
Α	Veoma loša	> 27 pukotina/m ³	0-25	
В	Loša	20-27 pukotina/m ³	25-50	
С	Zadovoljavajuća	13-19 pukotina/m ³	50-75	
D	Dobra	8-12 pukotina/m ³	75-90	
E	Odlična	0-7 pukotina/m ³	90-100	
Napomena: a) Kada je mereni RQD < 10, usvojiti vrednost 10				
b) RQD intervali od 5, npr. 95, 75, 60 su dovoljno tačni				

Tabela 4.1. Vrednovanje parametra RQD (NGI, 2015)

Parametar *Jn* zavisi od broja familija pukotina i pojedinačnih pukotina. Kriterijum za razlikovanje familije od pojedinačne pukotine nije jasno definisan i zavisi od rastojanja između paralelnih pukotina i dimenzija iskopa. U opštem slučaju, ako je rastojanje unutar jedne familije veće od visine ili širine podzemne prostorije, pukotine se posmatraju kao pojedinačne. Kontinualnost pukotina na čelu iskopa nema direktnog uticaja na vrednost Q. U pojedinim slučajevima treba uzeti u obzir i veličinu bloka. Kod stubastog lučenja, jedini mogući lom je paralelan osi stuba. Usvajanje vrednosti Jn = 9, za tri familije pukotina bi bilo previše konzervativno, stoga je preporučena (NGI, 2015) vrednost Jn = 4, za dve familije pukotina. Vrednovanje parametra Jn u okviru Q klasifikacije dato je u tabeli 4.2.

<i>Jn</i> - indeks broja familija pukotina		Jn	
Α	Masivna stenska masa, bez ili sa nekoliko pojedinačnih pukotina	0,5-1,0	
В	Jedna familija pukotina	2,0	
C	Jedna familija sa pojavom pojedinačnih pukotina	3,0	
D	Dve familije pukotina	4,0	
E	Dve familije sa pojavom pojedinačnih pukotina	6,0	
F	Tri familija pukotina	9,0	
G	Tri familije sa pojavom pojedinačnih pukotina	12,0	
Н	Četiri ili više familija, nasumično intenzivno ispucala stenska masa	15,0	
J	Zdrobljena stenska masa, nalik tlu	20,0	
Napomena: a) Na mestima ukrštanja iskopa, koristiti vrednost <i>Jn</i> uvećanu 3 puta (3* <i>Jn</i>) b) Za portalne delove iskopa koristiti 2* <i>Jn</i>			

Tabela 4.2. Vrednovanje parametra Jn (NGI, 2015)

Indeks hrapavosti pukotina *Jr* se određuje za najnepovoljniju familiju pukotina sa aspekta stabilnosti. Njegovo vrednovanje prikazano je u tabeli 4.3. Hrapavost pukotina se može proučavati u dve razmere posmatranja: termin hrapavost, u užem smislu, se odnosi na nepravilnosti pukotinske površi u mm-cm redu veličina. Termin zatalasanost se koristi za definisanje nepravilnosti u dm-m redu veličina, i mora se posmatrati u odnosu na prosečnu veličinu bloka. Ukoliko je blok manjih dimenzija od zatalasanosti, onda ona nije merodavna za određivanje *Jr*.

Ukoliko pukotina poseduje ispunu koja onemogućava ostvarivanje kontakta između zidova pukotine, tada je merodavna čvrstoća materijala ispune, pri čemu se usvaja Jr = 1. Ako je prisutan tanak sloj ispune, gde pre smicanja od 10 cm dolazi do kontakta zidova pukotine, onda se usvaja vrednost indeksa Jr kao za slučaj bez ispune. Za zatalasane i hrapave pukotine je potrebna veća debljina ispune za sprečavanje ostvarivanja kontakta zidova nego u slučaju glatkih, planarnih diskontinuiteta. U slučaju diskontinuiteta kod kojih je hrapavost različita u dva upravna pravca, što je čest slučaj kod rasednih ogledala sa izraženim strijama, merodavna je hrapavost merena u smeru mogućeg smicanja (NGI, 2015).

Indeks hrapavosti za masivne, neispucale stenske mase iznosi 4, dok za zdrobljen materijal nalik rezidualnom tlu iznosi 1 (NGI, 2015). Kod mekih neispucalih stena, indeks hrapavosti nije relevantan, s obzirom da pomeranje zavisi od čvrstoće stenske mase i naponskog stanja oko podzemne prostorije.

Indeks hrapaosti *Jr* se može odrediti pomoću koeficijenta hrapavosti pukotina JRC, parametra dobro poznatog iz BB kriterijuma loma. Korelacija između dva parametra prikazana je na slici 4.1.

Indeks izmene pukotina *Ja* značajno utiče na njihovu smičuću čvrstoću. Prilikom njegovog određivanja, pukotine su podeljene u tri klase ("a", "b" i "c") na osnovu postojanja ispune i stepena ostvarivanja kontakta zidova pukotine. Vrednovanje ovog indeksa prikazano je u tabeli 4.4. Indeks izmene *Ja* bi trebalo da se odredi za sve familije pukotina na licu iskopa, međutim, prilikom određivanja vrednosti Q, relevantan je indeks izmene najnepovoljnije orijentisane pukotine. Veliki uticaj na procenu indeksa *Ja* imaju mineraloške karakteristike ispune i potencijalno prisustvo bubrivih, montmorionitskih glina, koje izrazito nepovoljno utiču na stabilnost iskopa.

Tabela 4.3. Vrednovanje parametra Jr (NGI, 2015)

Jr – indeks hrapavosti pukotina		Jr		
a) Ostvaren kontakt zidova pukotina;				
b) Ostvaren kontakt zidova pukotina pre smicanja u iznosu 10 cm				
Α	Diskontinualne pukotine	4		
В	Hrapave ili nepravilne, talasaste pukotine	3		
С	Glatke, talasaste pukotine	2		
D	Ispolirane, talasaste	1,5		
E	Hrapave ili nepravilne, ravne pukotine	1,5		
F	Glatke, ravne pukotine	1		
G	Ispolirane, ravne pukotine	0,5		
Nanomena: a) Termini hranave glatke i ispolirane se odnose na hranavost u mm-cm redu				

veličina, dok termini talasaste i ravne ukazuju na zatalasanost u dm-m redu veličina c) Bez dodira zidova pukotina posle smicanja

Н	Glinena ispuna dovoljne debljine da spreči kontakt	1,0		
	zidova pukotina			
Napomena: b) Na vrednost Jr dodati 1 ako je srednje rastojanje pukotina unutar familije				
veće od 3 m (zavisi od veličine podzemnog iskopa)				
c) $Jr = 0.5$ se može koristiti za ispolirane, ravne pukotine sa lineacijom				
orijentisanom u smeru mogućeg kretanja				

Faktor redukcije zbog uticaja vode u pukotinama *Jw* je uveden zbog dvostrukog negativnog dejstva vode u terenu. Voda može omekšati ili ispirati mineralnu ispunu, kao i uzrokovati bubrenje montmorionitskih glina, što izaziva smanjenje ugla smičuće otpornosti diskontinuiteta. Takođe, pritisak vode smanjuje normalni napon koji deluje na zidove pukotina, smanjujući time smičuću čvrstoću blokova stene. Procena faktora *Jw* se vrši osmatranjem

dotoka i pritiska vode u podzemni iskop. Veoma niske vrednosti ovog faktora (Jw < 0,2) ukazuju na velike probleme sa nestabilnošću podzemnih otvora (NGI, 2015). Određivanje faktora Jw je povezano sa pojedinim nepouzdanostima. Kod plitko položenih podzemnih objekata, dotok vode može znatno varirati u zavisnosti od godišnjeg doba i količine padavina kada se vrši iskop. Ponekad, stenska masa može biti suva odmah po iskopu, sa naknadno uspostavljenim dotokom vode. U suprotnim slučajevima, veliki doticaj vode neposredno po obavljenom iskopu se može znatno smanjiti posle nekog vremena. Vrednovanje parametra *Jw* prikazano je u tabeli 4.5.

	Veza između Jr i JRCn	Jr	JRC ₂₀	JRC ₁₀
I	hrapava	4	20	11
11	glatka	3	14	9
ш	ispolirana	2	11	8
	Stepeničasta			
IV	hrapava	3	14	9
v	glatka	2	11	8
	ispolirana			

Slika 4.1. Korelacija koeficijenta hrapavosti pukotina JRC i indeksa hrapavosti Jr (Barton, 1987, iz Barton et al, 2023). JRC₂₀ i JRC₁₀₀ predstavljaju koeficijente hrapavosti pukotina određene na profilima diskontinuiteta veličine 20 i 100 cm, respektivno.

Faktor redukcije napona (**SRF**) – opisuje odnos napona oko podzemne prostorije i čvrstoće stenske mase. Njegovo vrednovanje je prikazano u tabeli 4.6. SRF se može proceniti poznavajući vrednosti većeg glavnog ili tangencijalnog napona oko podzemnog otvora i čvrstoće stenske mase na pritisak. Da bi se utvrdio faktor SRF, stenska masa se mora razvrstati u jednu od četiri kategorije. U tom pogledu, SRF se može odrediti za slučaj:

a) Prisustva oslabljenih, rasednih zona koje presecaju iskop. Ilustracija uticaja prisustva rasednih zona na vrednost faktora SRF prikazana je na slici 4.2.

b) Problema karakterističnih za krte stenske mase

c) Pojave vremenski zavisnih plastičnih deformacija u uslovima visokih pritisaka

d) Stena sa izraženim zapreminskim promenama, pre svih bubrenjem

Tabela 4.4. Vrednovanje parametra Ja (NGI, 2015)

<i>Ja</i> – indeks izmene pukotina			Ja
a) K	ontakt zidova pukotine (nema mineralne ispune, samo prevlaka)		
A	Zalečene pukotine sa čvrstom, nepropusnom ispunom (kvarc i epidot najčešće)	>35	0,75
В	Neizmenjeni zidovi pukotina, samo su pukotinske površi izmenile boju u vidu skrama	25-35	1
С	Slabo izmenjeni zidovi pukotina, pukotinske površi sa prevlakama od tvrdih minerala, peskovitih čestica i ne sadrže minerale glina	25-30	2
D	Prašinasta ili peskovito-glinovita prevlaka sa malo čvrste glinovite frakcije	20-25	3
E	Meke, sa malim uglom trenja, prevlake od kaolinita, liskuna, hlorita, talka, gipsa, grafita i drugih mekih minerala i malom količinom bubrivih glina	8-16	4
b) O	stvaren kontakt zidova pukotina pre smicanja od 10 cm (tanka isp	ouna)	
F	Pukotine ispunjene sitnom peskovitom raspadinom stena, bez glinenih frakcija	25-30	4
G	Jako prekonsolidovana, tvrda i kontinualna glinena ispuna, debljine < 5 mm	16-24	6
Н	Srednje ili manje prekonsolidovana meka i kontinualna glinena ispuna, debljine < 5 mm	12-16	8
J	Glinena ispuna sklona bubrenju, kontinualna, debljine < 5 mm. Vrednost <i>Ja</i> zavisi od procenta glinenih frakcija sklonih bubrenju	6-12	8-12
c) Bez dodira zidova pukotina (debela ispuna)			
K	Zone drobine, jako prekonsolidovane	16-24	6
L	Zone zaglinjene drobine, srednje ili malo prekonsolidovana glinena ispuna	12-16	8
Μ	Zone zaglinjene drobine, sa bubrivim glinama. <i>Ja</i> zavisi od procenta glinenih frakcija sklonih bubrenju	6-12	8-12
N	Debele, kontinualne zone gline, jako prekonsolidovane	12-16	10
0	Debele, kontinualne zone gline, srednje do malo prekonsolidovane	12-16	13
P	Debele, kontinualne zone bubrive gline. <i>Ja</i> zavisi od procenta glinenih frakcija sklonih bubrenju	6-12	13-20

Jw - Faktor redukcije zbog uticaja vode u pukotinama		Jw
Α	Iskop u suvom ili sa manjim lokalnim dotokom vode (vlažno ili sa par kapi)	1,0
В	Srednji dotok, povremeno ispiranje pukotinske ispune (brojne kapi/"kiša")	0,66
C	Dotok u mlazu ili visok pritisak vode u kompetentnoj steni sa pukotinama bez ispune	0,5
D	Veliki dotok ili visok pritisak vode, sa znatnim ispiranjem pukotinskih ispuna	0,33
E	Izuzetno velik dotok ili pritisak vode koji opada sa vremenom. Izaziva ispiranje ispune i moguće zarušavanje	0,2-0,1
F	Izuzetno velik dotok ili pritisak vode koji ne opada sa vremenom. Izaziva ispiranje ispune i moguće zarušavanje	0,1-0,05

Tabela 4.5. Vrednovanje parametra Jw(NGI, 2015)

Napomena: a) Vrednosti faktora C-F su grube procene. Povećati *Jw* ako se stena drenira ili je vršeno injektiranje

b) Posebni problemi izazvani stvaranjem ledenih sočiva nisu uzeti u obzir

Slika 4.2. Uticaj prisustva rasednih zona na vrednost SRF. SRF = 5, za prisustvo jedne zone; SRF = 10, za prisustvo više zona (NGI, 2015)
Tabela 4.6. Vrednovanje faktora redukcije napona SRF (NGI, 2015)

SRF - Faktor redukcije napona								
a) Slabe zone presecaju iskop, što može da oslabi stensku masu								
A	Brojne pojave oslabljenih zona na malom rastojan ili hemijski izmenjenu, veoma slabu stensku masu sa slabom stenom (bilo koja dubi	ju, koje sa , ili dugači na)	drže glinu ke deonice	10				
В	Brojne zone smicanja na kratkim rastojanjima u čv okružene slabom stenom (bilo koja o	vrstoj steni lubina)	bez gline,	7,5				
С	Pojedinačna slaba zona sa ili bez gline i hemijsl (dubina < 50 m)	ki izmenje	ne stene	5				
D	Slabe, otvorene pukotine, izrazito ispucala stena	(bilo koja	dubina)	5				
E	Pojedinačna slaba zona sa ili bez gline i hemijsl (dubina > 50 m)	ki izmenje	ne stene	2,5				
Napor iskop	nena: a) Smanjiti vrednosti SRF za 25-50 % ako sla	be zone ut	iču na ali ne	e presecaju				
b) Krt	a, mahom masivna stenska masa	σ_c/σ_1	σ_t/σ_c	SRF				
F	Nizak napon, blizu površine terena, otvorene pukotine	>200	<0,01	2,5				
G	Srednji nivo napona, povoljno stanje napona 200-10 0,01-0,3							
Н	Visok napon, stisnute pukotine. Uglavnom povoljno za stabilnost. Može biti nepovoljno za stabilnost u zavisnosti od orijentacije napona u odnosu na pukotine*	0,3-0,4	0,5-2 2-5*					
J	Umereno ljuskanje i ispadanje ploča posle > 1h u masivnoj steni	0,5-0,65	5-50					
K	Ljuskanje ili gorski udar nakon par minuta u masivnoj steni	3-2	0,65-1	50-200				
L	Jaki gorski udari i trenutne dinamičke deformacije u masivnoj steni	<2	>1	200-400				
Napor $\sigma_1/\sigma_3 <$ pritisa SRF =	nena: b) Za izrazito anizotropno primarno stanje naj <10, koristiti 0,75σ _c umesto σ _c . Kada je σ ₁ /σ ₃ > 10, k k stenske mase c) Kada je rastojanje od kalote do površine m = 5 za pomenuti slučai (videti F)	pona (ako oristiti 0,5 anje od šir	je izmereno) σ_c , gde je σ_c):kada je 5< čvrstoća na je, koristiti				
c) Vre stensk	emenski zavisna plastična deformacija nekompetenti te mase, usled visokog pritiska	ne	σ_t/σ_c	SRF				
Μ	Pritisci koji izazivaju male plastične deforma	cije	1-5	5-10				
N	Pritisci koji izazivaju velike plastične deforma	acije	>5	10-20				
Napor releva	nena: d) Određivanje vremenski zavisne deformacij ntnoj literaturi	e mora da	se izvrši pre	ema				
d) Ste	na koja bubri; bubrenje usled hemijskih reakcija zav	visi od pris	ustva vode	SRF				
0	Umereni pritisak bubrenja			5-10				
Р	Visok pritisak bubrenja			10-15				

Osnovna svrha Q klasifikacionog sistema je da se na osnovu vrednosti Q dobijene iz jednačine (12) odredi podgradni sistem podzemne prostorije. Na odabir elemenata podgrade i njihovo dimenzionisanje, pored vrednosti Q, utiču visina i dužina nepodgrađenog iskopa, kao i zahtevana sigurnost objekta. Tako na primer, podzemno odlagalište nuklearnog otpada ima veći zahtevani stepen sigurnosti od privremenog iskopa u rudniku. Međutim, određivanje elemenata trajne podgrade nije od značaja za temu ovog rada, te dijagram kvaliteta stenske mase i odabira podgrade (NGI, 2015) neće biti prikazan.

Pored osnovnog oblika Q (jednačina 12), u upotrebi je i normalizovani oblik, takozvani Qc (Barton, 1995), koji se dobija množenjem osnovne Q vrednosti sa $\sigma_c/100$, gde je σ_c izraženo u MPa (Qc = Q* $\sigma_c/100$). Vrednost Qc se može dalje koristiti za korelacije sa brzinom prostiranja P talasa, modulom deformacije stenske mase i opterećenjem na podgradu (Barton i dr, 2015). Pomenute korelacione jednačine neće biti detaljnije diskutovane.

Kao osnovnu prednost Q klasifikacije u odnosu na RMR i GSI, Barton (Barton i dr, 2015) navodi logaritamsku skalu sa rasponom od 10⁻³ do 10³. Qc skala može imati raspon od 10⁻⁴ do 10⁴, čime se približava stvarnoj varijabilnosti stanja stenskih masa koja je zastupljena u prirodi. Ilustracija širokog raspona kvaliteta stenskih masa u prirodi prikazana je na slici 4.3.

Slika 4.3. Kontrast najgoreg (Q = 0,001) i najboljeg (Q = 1000) kvaliteta stenske mase. Slike gore su iz Brazila, dole levo iz Švedske i dole desno iz Hong Konga (Barton i dr, 2015)

Po Bartonu (Barton, 2014), GSI i RMR nisu u mogućnosti svojim linearnim skalama da obuhvate ekstremnu nelinearnost i anizotropiju prirođe, što čini jednačine generalizovanog HB kriterijuma loma (prikazane u poglavlju 3.3.) nepotrebno kompleksnim. Takođe, Q sistem daje mogućnost predviđanja postojanja problema suvišnog profila u tunelima, kroz procenu neobične kombinacije Q parametara: Jn/Jr. Ako je odnos Jn/Jr > 6, to automatski ukazuje na veliku verovatnoću pojave suvišnog profila, uprkos kvalitetno izvedenom miniranju (Barton i dr, 2015)

Ipak, određeni autori navode nedostatke Q sistema. Tako na primer, Berisavljević i dr. (2021) ukazuju da je Q sistem pogodan za upotrebu pre svega u krtim, masivnim i umereno ispucalim stenskim masama, koje su na prostoru Srbije manje zastupljene od intenzivno ispucalih, raspadnutih i alterisanih stenskih masa.

4.2. Q-slope sistem

Q-slope klasifikacija (Barton i Bar, 2015) predstavlja modifikovani oblik Q sistema, namenjen proceni stabilnosti kosina i optimalnog ugla nagiba kosine bez izvedenih sanacionih mera. Q-slope je moguće primeniti na kosine izvedene u različitim stenskim masama, visine od 5 do 250 m. Ukoliko je stenska masa litološki heterogena, ograničenje visine kosine je 50 m (Bar i Barton, 2017). Klasifikaciju nije moguće primeniti na kosine izgrađene od flišnih sekvenci. Nastala je na osnovu više od 400 dokumentovanih primera iz prakse, Australije, Azije, Srednje Amerike i Evrope (Slovenija, Srbija i Španija).

Jednačina kojom se određuje Q-slope je ostala suštinski nepromenjena u odnosu na originalnu (jednačina 12), i glasi:

$$Qslope = \frac{RQD}{Jn} \times \left(\frac{Jr}{Ja}\right)_{O} \times \frac{Jwice}{SRFslope}$$
(15)

Gde je RQD/Jn veličina bloka; Jr/Ja smičuća čvrstoća najnepovoljnije orijentisane familije pukotina ili $(Jr/Ja)_1*(Jr/Ja)_2$, za slučaj klizanja klina; *Jwice/SRFslope* uticaj

spoljašnjih činilaca i naponskog stanja.

Vrednovanje parametara *RQD*, *Jn*, *Jr* i *Ja* ostalo je nepromenjeno u odnosu na Q sistem (prikazano u tabelama 4.1, 4.2, 4.3 i 4.4), dok su parametri *Jw* i *SRF* modifikovani kako bi bili uzeti u obzir efekti atmosferskih činilaca i leda i aspekti značajni za stabilnost kosine, respektivno.

Faktor orijentacije diskontinuiteta O se množi sa količnikom *Jr/Ja* (vrednosti O faktora prikazane su u tabeli 4.7). Faktor orijentacije A primenjuje se kod najnepovoljnije orijentisane familije pukotina. Ako se analizira stabilnost klina, faktor B se primenjuje na drugu familiju pukotina koja čini klin.

<i>O</i> -faktor	Familija A	Familija B
Veoma povoljna orijentacija	2,0	1,5
Umereno povoljna	1,0	1,0
Nepovoljna	0,75	0,9
Veoma nepovoljna	0,50	0,8
Izaziva nestabilnost ako se ne podgradi	0,25	0,5

Tabela 4.7. Vrednovanje O faktora (Berisavljević i dr, 2021)

Zahvaljujući izlošenosti kosinama atmosferskim činiocima u dugom vremenskom periodu, uveden je modifikovani faktor koji definiše ambijentalne (atmosferske i klimatske) i geološke uslove, *Jwice*, čije je vrednovanje prikazano u tabeli 4.8. Faktoru *Jwice* je neophodno pripisati najnepovoljnije uslove koji se mogu očekivati tokom trajanja eksploatacionog perioda kosine. Termin kompetentna stena se odnosi na bolji kvalitet, manju podložnost eroziji i raspadanju.

In sector of	Pustinjsko	Vlažno	Tropske	Pojava ledenih	
JWICe*	okruženje	okruženje	oluje	klinova	
Stabilna struktura;	1.0	0.7	0.5	0.0	
kompetentna stena	1,0	0,7	0,5	0,7	
Stabilna struktura;	0.7	0.6	03	0.5	
nekompetentna stena	0,7	0,0	0,5	0,5	
Nestabilna struktura;	0.8	0.5	0.1	03	
kompetentna stena	0,0	0,5	0,1	0,5	
Nestabilna struktura;	0.5	03	0.05	0.2	
nekompetentna stena	0,5	0,5	0,05	0,2	
Ukoliko su primenjene drenaž	ne mere koristiti	1,5 <i>Jwice</i> . U s	lučaju ojačanj	a kosine koristiti	
1,3* <i>Jwice</i> . Ukoliko je kosina oj	jačana i primenjo	ene su drenažno	e mere koristi	ti 1,5*1,3* <i>Jwice</i>	

Tabela 4.8. Vrednovanje faktora Jwice (Berisavljević i dr, 2021)

Faktor redukcije čvrstoće SRFslope predstavlja najnepovoljniju vrednost od sledeće tri:

SRFa definiše u kojoj meri je kosina podložna raspadanju i eroziji, a obuhvata i uticaj miniranja.

SRFb definiše odnos naponskog stanja u kosini i čvrstoće stenske mase koja izgrađuje kosinu. Parametar ima nepovoljne (visoke) vrednosti za visoke kosine i malu čvrstoću stenske mase.

SRFc definiše uticaj dominantnih struktura, poput rasednih zona, na redukciju čvrstoće. Vrednovanje ovih parametara prikazano je u tabeli 4.9.

Tabela 4.9. Vrednovanje parametra SRFslope (Berisavljević i dr, 2021)

Vrednovanje SRFa faktora - opis	SRFa
---------------------------------	------

A	Neznatno rastresanje u površi	ja ili iskopa	2,5		
В	Labilni blokovi, početak poja pukotina, podložnost raspadar	nicanja duž ed miniranja	5		
C	Kao i B, ali je veo	oma podloži	na raspadanju		10
D	Kosina je u poodmaklom stad	lijumu raspa i/ili leda	adanja, usled d	ejstva vode	15
E	Kosina od rezidualnog tla sa	a znatnim tra kosinu	ansportom mat	erijala niz	20
Vre	dnovanje SRFb faktora - opis			σ_c/σ_{1*}	SRFb
F	Umereni domen odnosa	čvrstoće i r	napona	50-200	2,5-1
G	Visoki domen odnosa	10-50	5-2,5		
Η	Lokalni lom inta	5-10	10-5		
J	Drobljenje ili	2,5-5	15-10		
K	Tečenje materijala sa deforn	1-2,5	20-15		
$\sigma_c -$					
Vre opis	dnovanje faktora SRFc -	Povoljno	Nepovoljno	Veoma nepovoljno	Izaziva nestabilnost ukoliko je nepodgrađen
L	Glavni diskontinuitet sa malo ili bez gline	1	2	4	8
Μ	Glavni diskontinuitet sa RQD ₁₀₀ = 0 ^a , zbog prisustva gline i izlomljene stene	2	4	8	16
N	RQD ₃₀₀ = 0 ^b , zbog prisustva gline i izlomljene stene	4	8	12	24
a) R duži	QD ₁₀₀ – RQD na dužini od 1 m ni od 3 m upravno na diskontin	upravno na uitet	diskontinuitet	; b) RQD300 -	- RQD na

Osnovni cilj Q-slope klasifikacije je određivanje najvećeg mogućeg nagiba kosine β (bez ikakvih mera ojačanja), pri kome će kosina ostati stabilna duži vremenski period (od 6 meseci do 50 godina). Jednačinu zavisnosti Q-slope i ugla β su dali Bar i Barton (2017) u sledećem obliku:

$$\beta = 20 \log_{10} Qslope + 65^{\circ} \tag{16}$$

Primeri određivanja optimalnog ugla nagiba etaža u okviru visokih kosina dati su na slikama 4.4. i 4.5.

Slika 4.4. Kosina u promenljivom nagibu etaža (Barton i Bar, 2015)

Slika 4.5. Kosina površinskog kopa u promenljivom nagibu etaža (Barton i Bar, 2017)

5. PRIMENA KLASIFIKACIONIH SISTEMA ZA ODREĐIVANJE MC PARAMETARA STENSKE MASE

Prilikom projektovanja u stenskoj masi, nju je moguće posmatrati na dva različita načina. Ukoliko je intenzivno ispucala, sa rastojanjima pukotina koja su mnogo manja od dimenzija iskopa i bez preferiranih ravni anizotropije (ukratko, ako je u pitanju HB materijal, videti potpoglavlje 3.3.), stenska masa se može smatrati hipotetičkim, ekvivalentnim kontinuumom. U tom slučaju, do loma dolazi kroz stensku masu u celini i pritom se stvaraju cilindrične klizne površi, a merodavna je smičuća čvrstoća stenske mase (izražena generalizovanim HB kriterijumom loma). Suprotni pristup je diskontinualno modeliranje, gde dolazi do loma duž diskontinuiteta i klizanja pojedinačnih blokova, a gde je merodavna smičuća čvrstoća pukotina (predstavljena najčešće BB kriterijumom loma). Ovo je ilustrovano na slici

Slika 5.1. a) Kontinualna stenska masa; b) Diskontinualna stenska masa (Hudson i Harrison, 1997)

Barton i dr. (2023) navode da su pristupi kontinuuma i diskontinuuma međusobno isključivi, i da se ne mogu koristiti za istu stensku masu. Takođe, navode da je diskontinuum primenljiv u velikoj većini slučajeva (> 90 %), a kontinuum znatno ređe (< 10 %). Pomenute procentualne vrednosti su procenjene na osnovu višedecenijskog iskustva na stotinama projekata u desetinama država širom sveta (Barton i dr, 2023). Ipak, pomenute podatke treba uzeti sa rezervom. U Srbiji i državama u okruženju intenzivno ispucale i raspadnute stenske mase veoma rasprostranjene, što opravdava čestu upotrebu modela kontinuuma.

Za vršenje analiza stabilnosti kontinuuma, neophodno je poznavanje parametara smičuće čvrstoće stenske mase. U svakodnevnoj geotehničkoj praksi, najčešće su u upotrebi

MC parametri: kohezija *c* i ugao smičuće otpornosti φ . Barton u brojnim publikacijama (Barton, 2002; Barton 2012; Barton i dr. 2023) navodi krupne nedostatke MC pristupa, od kojih će biti navedena dva glavna. Prvi je da stvarno ponašanje stenske mase ne prati pristup "*c* + $\sigma_n tg\varphi^{\circ}$, već da je realnost degradacija kohezije (lom materijalnih mostova) pri malim deformacijama i mobilizacija dilatancije i trenja (prvo vršnog, pa rezidualnog) pri većim deformacijama (pristup "*c then* $\sigma_n tg\varphi^{\circ}$). Drugi nedostatak je da ugao smičuće otpornosti i kohezija stenske mase nemaju realno fizičko značenje, te da je teško znati šta oni stvarno predstavljaju. Ipak, Barton (Barton, 2002) daje jednačine za određivanje *c* i φ stenske mase, koje će na narednim stranama biti upoređene sa onima po generalizovanom HB kriterijumu loma.

5.1. Primena GSI i GHB kriterijuma loma za definisanje MC parametara

HB kriterijum je originalno razvijen za upotrebu u analizama i projektovanju podzemnih iskopa (Hoek i Brown, 1980a). U takvim slučajevima, pogodnije je čvrstoću stenske mase izraziti preko glavnih napona, koji mogu da se uporede sa indukovanim sekundarnim glavnim naponima oko tunelskog otvora. Međutim, u analizama stabilnosti kosina, čvrstoća materijala se najčešće izražava preko normalnih i smičućih napona, te otuda potreba za konverzijom HB kriterijuma loma iz polja glavnih napona u polje normalnih i smičućih napona (Renani i Cai, 2021).

Hoek (1983) navodi rešenje za Morovu anvelopu loma koja se najbolje poklapa sa anvelopom po originalnom HB kriterijumu, za parametara = 0.5:

$$\tau = \left[ctg\left(\varphi^{ins}\right) - cos\left(\varphi^{ins}\right) \right] / \left(\frac{m\sigma_{ci}}{8}\right)$$
(17)

Značenje parametara *m* i σ_{ci} je već poznato (potpoglavlje 3.3.), a ugao smičuće otpornosti φ^{ins} i kohezija c^{ins} se mogu dobiti iz sledećih izraza:

$$\varphi^{ins} = \operatorname{arctg} \left\{ 4 \left[1 + \frac{16(m\sigma_n + s\sigma_{ci})}{3m^2\sigma_{ci}} \right] \cos^2 \left[\frac{\pi}{6} + \frac{1}{3} \operatorname{arcsin}(1 + \frac{16(m\sigma_n + s\sigma_{ci})}{3m^2\sigma_{ci}})^{-1,5} \right] - 1 \right\}^{-0,5}$$

$$(18)$$

$$c^{ins} = \tau - \sigma_n \times tg \left(\varphi^{ins}\right) \tag{19}$$

 φ^{ins} i c^{ins} predstavljaju trenutne, tangentne vrednosti ugla smičuće otpornosti i kohezije, respektivno. U pitanju su parametri linearne anvelope loma koja predstavlja tangentu na HB

paraboličku anvelopu, za određeni nivo normalnog napona σ_n . Ovi parametri nisu konstante za određeni materijal s obzirom da zavise od nivoa normalnog napona.

Uključivanje različitih vrednosti eksponenta *a* u generalizovani HB kriterijum loma uslovilo je dodatno usložnjavanje jednačina 17, 18 i 19 (Renani i Cai, 2021). Hoek (1994b) i Hoek et al. (1995) predlažu numerički pristup koji koristi rešenje dobijeno od strane Balmer (1952) za generisanje parova σ_n , τ iz generalizovanog HB kriterijuma za dobijanje odgovarajuće Morove anvelope loma:

$$\sigma_n = \sigma_3 + \frac{\sigma_1 - \sigma_3}{\frac{\delta \sigma_1}{\delta \sigma_3} + 1} \tag{20}$$

$$\tau = (\sigma_n - \sigma_3) \sqrt{\frac{\delta \sigma_1}{\delta \sigma_3}}$$
(21)

Hoek (1994b) i Hoek i dr. (1995) predlažu korišćenje ekvivalentnih parametara čvrstoće, koji se mogu odrediti fitovanjem linearne MC anvelope prema parovima σ_n , τ .

$$\tau = c^{eq} + \sigma_n \times tg\left(\varphi^{eq}\right) \tag{22}$$

Međutim, oni nisu naznačili optimalni nivo napona za koji bi se izvršio odabir MC parametara. Hoek i Brown (1997) naglašavaju da je najvažniji aspekt izbora ekvivalentnih parametara φ^{eq} i c^{eq} odabir nivoa napona u kom bi se izvršilo fitovanje krive. Njihov predlog je da optimalan raspon manjeg glavnog napona σ_3 bude od nule do gornje granice, σ_{3max} , jednake $0,25\sigma_{ci}$. Marinos i Hoek (2000) naglašavaju da je pomenuta gornja granična vrednost $\sigma_{3max} = 0,25\sigma_{ci}$ pogodna za tunele na dubini većoj od 30 m. Ipak, za plitke tunele i kosine oni predlažu vrednost σ_{3max} koja je jednaka vertikalnom efektivnom naponu u kaloti tunela, odnosno na prosečnoj dubini klizne površi kada su kosine u pitanju.

Vrednosti ekvivalentnog ugla smičuće otpornosti i kohezije se mogu dobiti koristeći sledeće zavisnosti, po Hoek i dr. (2002):

$$c^{eq} = \frac{\sigma_{ci}[(1+2a)s+(1-a)m\sigma_{3n}](s+m\sigma_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1+[6am(s+m\sigma_{3n})^{a-1}]/[(1+a)(2+a)]}}$$

$$\varphi^{eq} = \arcsin\left[\frac{6am\left(s+m\sigma_{3n}\right)^{a-1}}{2(1+a)(2+a)+6am(s+m\sigma_{3n})^{a-1}}\right]$$
(24)

Gde σ_{3n} predstavlja normalizovanu gornju graničnu vrednost svestranog pritiska, a dobija se po formuli:

$$\sigma_{3n} = \frac{\sigma_{3max}}{\sigma_{ci}}$$

2.2

39

(25)

(23)

Gde je σ_{3max} gornja granična vrednost svestranog pritiska.

Ekvivalentni parametri mogu poslužiti za dobijanje ekvivalentne vrednosti jednoaksijalne čvrstoće na pritisak σ_c^{eq} :

$$\sigma_c^{eq} = \frac{2c^{eq}\cos(\varphi^{eq})}{1-\sin(\varphi^{eq})}$$
(26)

Na slici 5.1. prikazane su nelinearna HB anvelopa i linearna ekvivalentna MC anvelopa loma za neoštećenu stensku masu sa parametrima: $\sigma_{ci} = 100$ MPa, GSI = 50, $m_i = 20$ i D = 0, za raspon svestranog pritiska od 0 do $\sigma_{3,max} = 5$ MPa. Može se pokazati da sa porastom σ_{3max} , c^{eq} i σ_c^{eq} rastu, dok φ^{eq} opada (Renani i Cai, 2021). Ovo je očekivano, s obzirom da sa porastom nivoa normalnog, odnosno svestranog napona, doprinos dilatancije opada, nagib krive postaje sve manji a "kohezivni" odsečak veći. U opštem slučaju, jednoaksijalna čvrstoća na pritisak

dobijena iz ekvivalentnih MC parametara (koristeći jednačinu 26) je veća od one dobijene iz generalizovanog HB kriterijuma loma (koristeći jednačinu 5). Ova razlika raste sa porastom σ_{3max} .

Slika 5.1. HB (puna linija) i ekvivalentna MC (isprekidana linija) anvelopa loma, za $\sigma_{3,max} = 5$ MPa

Hoek i dr. (2002) navode da se gornja granična vrednost svestranog pritiska σ_{3max} , za tunele, može proceniti iz jednačine (27), a za kosine iz jednačine (28):

$$\frac{\sigma_{3max}}{\sigma_{cm}} = 0.47 \left(\frac{\sigma_{cm}}{\gamma Z}\right)^{-0.94}$$
(27)

$$\frac{\sigma_{3max}}{\sigma_{cm}} = 0.72 \left(\frac{\sigma_{cm}}{\gamma_H}\right)^{-0.91}$$
(28)

Gde je γ zapreminska težina stenske mase, *Z* dubina tunela a *H* prosečna dubina klizne površi na kosini. Parametar $\sigma_{c,m}$ se naziva globalna čvrstoća stenske mase. Ona je ekvivalentna σ_{c}^{eq} kada je $\sigma_{3,max} = 0,25\sigma_{ci}$, i može se dobiti iz jednačine (29). Ukoliko je primarni horizontalni napon veći od vertikalnog, on treba da zameni γH , odnosno γZ u jednačinama (27) i (28).

$$\sigma_{cm} = \sigma_{ci} \frac{(m+4s-a(m-8s))(\frac{m}{4}+s)^{a-1}}{2(1+a)(2+a)}$$

(29)

Korišćenje jednačina (23) do (29) za dobijanje ekvivalentnih parametara smičuće čvrstoće je preporučeno od strane Hoek i Brown (2019) u njihovoj poslednjoj reviziji kriterijuma loma.

Renani i Martin (2020) su sproveli niz komparativnih analiza stabilnosti kosina koristeći tačno rešenje Morgenstern i Price (1965) za klizne površi proizvoljnog oblika. Pokazali su da konzistencija između rezultata HB i ekvivalentnog MC kriterijuma može biti znatno unapređena koristeći sledeću jednačinu za dobijanje gornje granične vrednosti svestranog pritiska $\sigma_{3, max}$:

$$\frac{\sigma_{3max}}{\gamma H} = \frac{0,175}{tg\beta}$$
(30)

Ovime, oni ukazuju na značajan uticaj nagiba kosine β na vrednost $\sigma_{3,max}$.

5.2. Primena Q klasifikacije za definisanje MC parametara

U svojim brojnim naučnim radovima, Barton (Barton 2002; Barton 2012; Barton 2021;

Barton i dr. 2023) obeshrabruje, a ponegde i potpuno odbacuje modeliranje stenske mase kao kontinuuma, navodeći da je ponašanje stenske mase kompleksnije i interesantnije od kontinuuma, i da takav pristup obično daje netačne rezultate (Barton 2021). Ipak, u slučaju da se inženjer opredeli za modeliranje primenom mehanike kontinuuma, Barton (2002) predlaže korišćenje Q klasifikacije za definisanje MC parametara smičuće čvrstoće, ukazujući na njene prednosti u odnosu na HB jednačine (23) i (24), naročito u publikacijama Barton 2012; Barton 2021.

Tokom razvijanja Q sistema 1973, primećeno je da potreba za torkretiranjem i ugradnjom ankera u tunelima zavisi od odnosa RQD/Jn i Jn/Ja. Pritom, potreba za torkretom raste sa smanjivanjem veličine bloka (nizak RQD/Jn), a potreba za ankerisanjem postoji kod stena sa malim trenjem između blokova (nizak Jn/Ja) (Barton, 2002). Na osnovu povratnih analiza utvrđeno je da tg^{-1} (Jn/Ja) dobro koreliše sa vrednostima $\varphi + i$ i $\varphi - i$, za dilatantne (hrapave, bez ispune) i kontraktivne (sa debelom glinovitom ispunom) diskontinuitete. Pored odnosa Jn/Ja, uvodi se i faktor prisustva vode Jw, kao korekcioni faktor za efektivno naponsko stanje i omekšavanje pukotinske ispune (Barton, 2002). "Frikciona komponenta" čvrstoće stenske mase FC se može odrediti iz sledeće jednačine:

$$FC = \operatorname{arctg}\left(\frac{Jr}{Ja} \times Jw\right) \tag{31}$$

S obzirom da se parametri *Jr* i *Ja* određuju za najnepovoljniji slučaj, dobija se minimalna komponenta čvrstoće FC.

Kohezija stenske mase zavisi od veličine bloka, koji je definisan odnosom *RQDIJn*. Kako bi se uzeo u obzir uticaj efekta fragmentacije i naponskog stanja stenske mase, za potrebe određivanja kohezije uveden je i parametar *SRF*. "Kohezivna komponenta" čvrstoće stenske mase, sačinjena od tri parametra Q klasifikacije (*RQD*, *Jn* i *SRF*) može biti generalizovana i poboljšana normalizovanom vrednošću čvrstoće na pritisak intaktne stene, $\sigma_{ci}/100$ (Barton, 2002). Ona može biti procenjena iz sledeće zavisnosti:

$$CC = \frac{RQD}{Jn} \times \frac{1}{SRF} \times \frac{\sigma_{ci}}{100}$$
(32)

Gde je, čvrstoća na pritisak intaktne stene σ_{ci} izražena u MPa. Može se primetiti da komponente čvrstoće FC i CC čine dva dela jednačine za određivanje normalizovane vrednosti $Qc (Qc = RQD/Jn^*Jr/Ja^*Jw/SRF^*\sigma_{ci}/100)$. Istaknuto je (Barton, 20002) da parametar Qc ima fundamentalni značaj, i da se njegova vrednost približno može izraziti u MPa. Samim tim, i komponente čvrstoće FC i CC imaju realnije fizičko značenje od ekvivalentnih parametara

čvrstoće po HB kriterijumu loma. Prema Barton (2012), niske vrednosti "frikcione komponente" FC zahtevaju ugradnju ankera, a niske vrednosti "kohezivne komponente" CC zahtevaju torkretiranje.

Barton (2012) navodi da komponente čvrstoće FC i CC suštinski ne predstavljaju ugao smičuće otpornosti i koheziju stenske mase, ali da je pogodnije odrediti MC parametre koristeći jednačine (31) i (32) nego kao fiksne, diskretne vrednosti za određenu Q klasu. Na primer,

predlog da je c > 10 MPa, a $\varphi > 45^{\circ}$, za Q = 10-100 je manje tačno rešenje od pomenutih jednačina.

Za kraj, biće navedene potencijalne prednosti, po Bartonu, korišćenja jednačina Q sistema u odnosu na one generalizovanog HB kriterijuma loma, za modeliranje stenske mase koja se može aproksimirati kontinuumom. Ove prednosti su istaknute u publikacijama: Barton (2013) i Barton (2021). Autor kao osnovni razlog za primenu jednačina (31) i (32) navodi njihovu jednostavnost i mogućnost primene bez korišćenja programa, direktno na terenu. Takođe, može se vizuelizovati uticaj promenjenih hidrogeoloških uslova, prisustva glinene ispune ili dodatne familije pukotina, na vrednost MC parametara. Zanimljivo je da autor navodi nemogućnost HB relacija da u obzir uzmu prisustvo glinovite ispune, što je očigledno netačno: glinena ispuna će uticati na smanjenje vrednosti GSI preko smanjenja kvaliteta pukotinskih površi. S druge strane, navedeno je da kompleksnost jednačina (23) i (24) ne iziskuje nužno i njihovu veću preciznost. Jednačine izvedene iz Q sistema ne predstavljaju samo aproksimativne zavisnosti za preliminarnu procenu MC parametara, već se mogu koristiti i prilikom numeričkog modeliranja stenske mase, kao što je rađeno u dva rudnika podzemne eksploatacije u Indiji (Barton i Pandey, 2011). Autori GSI klasifikacije i HB kriterijuma loma nisu vršili poređenja svojih jednačina (23) i (24) sa onima po Q sistemu.

6. PRAKTIČAN PRIMER

Uporedna analiza dobijanja MC parametara iz dva različita postupka, prikazana u prethodnom poglavlju, izvršena je na primeru kosine pored regionalnog puta 170 Valjevo-Bajina Bašta, na lokalitetu Debelo Brdo. Položaj kosine na topografskoj osnovi opštine Valjevo, dobijenoj iz DTM-a, prikazan je na slici 6.1. Kosina se nalazi na severnoj padini planinskog prevoja Debelo Brdo, smeštenog između planina Jablanik i Povlen, na nadmorskoj visini 962 mnm. Prosečna godišnja količina padavina iznosi oko 1000 mm. Geografske koordinate kosine su: 44°9'25" severne geografske širine i 19°42'13" istočne geografske dužine. Dužina kartiranog dela kosine iznosi oko 45 m, a visina od 7-10 m.

Slika 6.1. Položaj kosine (označeno plavom tačkom) na topografskoj osnovi Valjeva (preuzeto i obrađeno sa sajta <u>https://earthexplorer.usgs.gov</u>)

Kosina je izvedena u intenzivno ispucalim i izmenjenim dijabazima. Dijabazi genetski pripadaju geološkoj formaciji ofiolitskog melanža, nastaloj u subdukcionom trogu usled mešanja nelitifikovanih sedimenata pasivnog oboda, zapune subdukcionog troga i olistolita donetih sa subdukovanog okeanskog dna i gravitaciono sa pasivnog oboda (Dimitrijević, 1989). Melanž kom pripada posmatrana kosina je srednje i gornjo jurske starosti. U starijoj literaturi ofiolitski melanž se naziva dijabaz-rožna formacija, koja je tumačena kao kompleks sedimenata

okeanskog dna sa utisnutim vulkanitima, najčešće bazičnim. Osnovna karakteristika ofiolitskog melanža je izrazita heterogenost u pogledu litološkog sastava, veoma složena i haotična građa, sa neritmičkim smenjivanjem i bočnim isklinjavanjem litoloških članova i njihovim nepravilnim smenjivanjem u vertikalnom i horizontalnom pravcu. Stenski kompleks ofiolitskog melanža u široj okolini kosine izgrađuju: glinci, peščari, rožnaci, laporci i krečnjaci, od sedimentnih stena. Uz njih se javljaju magmatske stene: dijabazi, melafiri, peridotiti, gabrovi i spiliti. Sedimentne stene ovog kompleksa u blizini predmetne lokacije, pogotovo glinci i peščari, su tankoslojevite i često raspadnute do nivoa rezidualnog tla. Dijabazi su često kuglasto lučeni, a mestimično intenzivno ispucali, sa osobinama sitnozrnog glinovitog peščara. Submarinskog su porekla, sinhroni sa sedimentima u koje su se izlili. Intenzivno su alterisani. Najizraženiji procesi alteracije su uralitizacija i karbonatizacija, zatim albitizacija i retko silifikacija. Izgrađeni su od alterisanog plagioklasa koji u svežijim primercima odgovara

labradoritu i monokliničnog piroksena koji je najčešće transformisan u sekundarni amfibol. Struktura je ofitska. Navedeno je preuzeto iz Mojsilović i dr. (1975). Položaj kosine na OGK, list Valjevo (Mojsilović i dr, 1975) naznačen je crvenom tačkom na slici 6.2.

Slika 6.2. Geološka građa šire okoline Debelog Brda, sa označenim položajem kosine. Legenda: T_1 -peskovito-laporoviti krečnjaci; T_3 -sprudni krečnjaci; α -porfiriti; $\beta\beta J_{2,3}$ – dijabazi; $J_{2,3}$ -dijabaz-rožna formacija; J_3^3 -krečnjaci; K_2^2 -slojeviti, laporoviti krečnjaci (Mojsilović i dr, 1975) Na posmatranoj kosini, dijabazi su crno-zelene boje, sa crvenim skramama, intenzivno ispucali i izmenjeni. Alteracija stenske mase nije ograničena samo na pukotine, već se prostire u dubinu stenske mase, dajući joj izgled glinca. Na kosini je prisutno umereno osipanje i odronjavanje malih blokova, međutim nema klizišta i tragova linijske erozije. Površinsko spiranje je umerenog intenziteta i obuhvata sitnozrne frakcije drobinske raspadine.

Važno je napomenuti da su zavisnosti (31) i (32) za izračunavanje MC parametara prema Q klasifikaciji, namenjene za upotrebu u tunelima. U ovom slučaju, one će biti upotrebljene za kosinu, s tim što će u pomenutim zavisnostima biti korišćeni parametri Q, a ne Q-slope sistema, kako bi se očuvala originalna formulacija pomenutih zavisnosti.

6.1. Rezultati inženjerskogeološkog kartiranja kosine

Detaljno inženjerskogeološko kartiranje kosine izvršeno je 29. aprila 2023. godine, u dužini od oko 45 m. Tom prilikom, izdvojene su dve kvazihomogene zone po parametru ispucalosti (prikazano na slici 6.3.). Zonu I karakteriše intenzivna ispucalost stenske mase, sa tri familije i pojedinačnim pukotinama, na malom rastojanju. Stenska masa je homogeno ispucala, sa dobro uzglobljenim blokovima čije su dimenzije mnogo manje u odnosu na dimenzije kosine. Ne postoje dominantne strukturne ravni anizotropije, stenska masa je izotropna i ispoljava krto naponsko-deformacijsko ponašanje. Kosina je relativno male visine, te su svestrani pritisci niski. Sve navedeno ukazuje na odličnu podobnost aproksimiranja stenske mase HB materijalom i klasifikaciju pomoću GSI sistema (videti potpoglavlje 3.3.). Stabilnost kosine u ovoj zoni je uslovljena čvrstoćom na smicanje stenske mase koja se može smatrati ekvivalentnim kontinuumom. GSI i Q klasifikacija i odabir MC parametara je izvršen za kvazihomogenu zonu I.

Kvazihomogena zona II je okarakterisana značajno manjim stepenom ispucalosti i većom kontinualnošću pukotina, te većom veličinom bloka. Prisutno je ispadanje klinova po familijama spregnutih pukotina i veća količina odronjenog materijala nego u zoni I. Stabilnost kosine u ovoj zoni uslovljena je smičućom čvrstoćom pukotina koje formiraju klin, stenska masa predstavlja diskontinualnu sredinu i ne može se aproksimirati ekvivalentnim kontinuumom, te nije pogodno koristiti HB kriterijum loma. Kako odabir ekvivalentnih MC parametara stenske mase u ovoj zoni nema smisla, ona neće biti predmet daljeg detaljnijeg proučavanja. U narednim pasusima biće prikazane osnovne karakteristike familija pukotina zone I, kao i rezultati GSI i Q klasifiacije.

Konturni dijagram elemenata pada pukotina prikazan je na slici 6.5. Napravljen je na osnovu 23 izmerena elementa pada diskontinuiteta. Mogu se uočiti 3 familije pukotina i pojedinačne pukotine. Rasipanje elemenata pada unutar svake familije, odnosno zatalasanost u metarskoj razmeri, je veliko. Za izdvajanje familija pukotina korišćena je opcija Sets From Cluster Analysis, a maksimalni ugao rasipanja vrednosti unutar jedne familije iznosi 20°. Elementi pada kosine iznose 130/68.

Familija F_1 ima statističku vrednost elemenata pada 108/35 (mereno sa dijagrama sa slike 6.5.). Pukotine su umereno hrapave i umereno izmenjene do izmenjene, male kontinualnosti (< 1,0 m), stisnute, bez ispune, na rastojanju 10-20 cm.

Slika 6.3. Kosina sa izdvojenim kvazihomogenim zonama po parametru ispucalosti

Slika 6.4. Stenska masa u kvazihomogenoj zoni I

(Color	Density C	once	enti	rations		
			0.00	-	1.	30	_
			1.30	-	2.	60	
			2.60	-	3.	90	
			3.90	-	5.	20	
			5.20	-	6.	50	
			6.50	-	7.	80	
			7.80	-	9.	10	
			9.10	-	1(0.40	
			10.40	-	1	1.70	
			11.70	-	1	3.00	_
	Maximur	n Density	12.57%				
Contour Data			Pole Vect	ors			
Contour Distribution			Fisher				
Counting Circle Size			1.0%				
	Color	Dip	Dip Dir	ecti	on	Label	
		Use	er Planes				
1		68	13	0		Kosina	
		Mean	Set Plane	15			
1m		35	10	8			
2m		74	26	4			
3m		78	34	ю			
	P	lot Mode	Pole Vect	ors			_
	Vec	tor Count	23 (23 En	tries)			_
	He	misphere	Lower				_
	P	rojection	Equal Ang	gle			

Slika 6.5. Konturni dijagram EP pukotina merenih geološkim kompasom

Familija F_2 ima statističke vrednosti elemenata pada 264/74. Pukotine ove familije su umereno hrapave do glatke, umereno izmenjene do izmenjene, stisnute, a mestimično sa zevom do 1 mm, bez ispune. Kontinualnost iznosi 1-3 m, mestimično i preko 3 m, a rastojanje između pukotina unutar familije iznosi 10-20 cm.

Familija F_3 ima statističke vrednosti elemenata pada 340/78. Pukotine su umereno hrapave, umereno izmenjene do izmenjene, sa zevom do 1 mm, sa tankom tvrdom ispunom. Kontinualnost je < 1,0 m, a rastojanje pukotina nešto veće nego kod prethodne dve familije i iznosi 10-30 cm. Sve tri familije pukotina imaju približno slična svojstva, što ukazuje na opravdanu pretpostavku o homogenosti stenske mase. Profili hrapavosti pukotinskih površi, sa procenjenim vrednostima JRC-a dati su na slici 6.6.

Izvršeno je 22 merenja Šmitovim čekićem. Na svežem prelomu stenske mase izvršeno

je 15 merenja, a dobijena je srednja vrednost odskoka SH = 45. U nedostatku laboratorijskih ispitivanja vrednost zapreminske težine stenske mase je procenjena na $\gamma = 25 \text{ kN/m}^3$. Očitavanjem sa dijagrama prikazanog na slici 6.7. dobijena je vrednost jednoaksijalne čvrstoće na pritisak intaktne stene $\sigma_{ci} = 100$ MPa. Na izmenjenoj stenskoj masi izvršeno je 7 opita Šmitovim čekićem, sa dobijenom srednjom vrednošću odskoka SH = 36. Usvojena je ista vrednost zapreminske težine $\gamma = 25 \text{ kN/m}^3$, a očitavanjem sa dijagrama određena je vrednost $\sigma_{ci} = 60$ MPa.

Slika 6.6. Profili hrapavosti pukotinskih površi, sa vrednostima JRC-a

Slika 6.7. Dijagram zavisnosti odskoka Šmitovog čekića i čvrstoće na pritisak intaktne stene (Deere i Miller, 1966)

Tabela 6.1. Rezultati ispitivanja Point Load Test-a

Uzorak W(m) D(m) L(m) Ekvivalentni prečnik De (m) Sila pri lomu P (kN) Indeks tačkaste čvrstoće Is (kPa) Korekcioni faktor f Korigovani Is50 (kPa) Čvrstoća na pritisak oc (MPa) Komentar

U-1*	0,05	0,035	0,05	0,047215457	1,1	493,4285714	0,974543852	480,8677809	11,54082674	T3-lom po pukotini
U-1**	0,05	0,035	0,045	0,047215457	5,52	2476,114286	0,974543852	2413,081955	57,91396692	T1-lom kroz masu
U-2	0,055	0,025	0,04	0,041852029	1,3	742,1818182	0,923072754	685,0878151	16,44210756	T3-lom po pukotini
U-3	0,055	0,037	0,04	0,050915191	3,99	1539,140049	1,008195648	1551,754299	37,24210317	T1-lom kroz masu
U-4	0,065	0,045	0,045	0,061041909	4,528	1215,206838	1,093946659	1329,37146	31,90491503	T2-kombinovani lom
U-5	0,06	0,035	0,03	0,051721942	2,008	750,6095238	1,015353258	762,1338253	18,29121181	T2-kombinovani lom

Uzeto je 6 uzoraka za ispitivanje Point Load Test-om, koje je izvršeno na Rudarskogeološkom fakultetu u Beogradu, uz pomoć mentora, doc. dr Zorana Berisavljevića. Rezultati PLT su prikazani u tabeli 6.1. Od šest izvršenih testova, dva su neuspešna (desio se lom po pukotini), dva delimično uspešna (kombinovani lom) i dva uspešna (lom kroz masu). Prilikom korelacije indeksa tačkaste čvrstoće *Is50* i čvrstoće na pritisak σ_{ci} korišćena je zavisnost $\sigma_{ci} =$ *24Is50*, po Broch i Franklin (1972). Navedena korelacija je odabrana kao najčešće korišćena u praksi, s obzirom na nedostatak odgovarajućih ispitivanja veze σ_{ci} i *Is50* za dijabaze. Vrednosti σ_{ci} dobijene iz testova pri kojima se desio lom kroz masu iznose 37 i 58 MPa. Imajući u vidu navedene vrednosti, kao i one dobijene pomoću Šmitovog čekića, koji je u ovom slučaju bio pouzdaniji metod, usvojena je vrednost koja će biti korišćena za proračune $\sigma_{ci} = 70$ MPa. Fotografije uzoraka pre i posle loma su prikazane na slici 6.8. Iz razloga tehničke prirode nisu fotografisani svi uzorci.

51

Slika 6.8. Uzorci pre (levo) i posle (desno) loma

6.1.1. Procena GSI vrednosti

GSI je određen pomoću dijagrama sa 6 strukturnih kategorija (Hoek i Marinos, 2000), prikazanog na slici 6.9. i kvantifikovanog dijagrama (Hoek i dr, 2013) prikazanog na slici 6.10. Neophodni ulazni podaci su indeks kvaliteta stenske mase RQD i faktor kvaliteta pukotinskih površi iz RMR₈₉ klasifikacije, Jcond₈₉. Parametar RQD je određen preko zapreminske učestalosti pukotina *Jv* koristeći jednačine (13) i (14). Tom prilikom, kao prosečna rastojanja pukotina unutar familija odabrane su vrednosti 0,1; 0,1; 0,12 m. Pomenute vrednosti su odabrane kao donje granične vrednosti raspona rastojanja pukotina pomenutih na stranama 49 i 50, kako bi analiza bila na strani sigurnosti, ali i kako bi u obzir bile uzete pojedinačne pukotine koje utiču na vrednost RQD ali nisu eksplicitno uključene u jednačine (13) i (14).

$$Jv = \sum_{i=1}^{n} \frac{1}{s_i} = \frac{1}{0.1} + \frac{1}{0.1} + \frac{1}{0.12} = 28,3$$

0,1 0,1 0,12

RQD = 110 - 2,5Jv = 110 - 2,5*28,3 = 110 - 70,75 = 39

Podaci o kvalitetu zidova pukotina i veličini parametra Jcond₈₉ su prikazani u tabeli 6.2.

	-				
GEOLOSKI INDEKS CVRSTOCE Na osnovu karakteristika stenske mase odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI) pomoću kontura. Ne pokušavati biti previše precizan. Bolje je pretpostaviti raspon vrednosti za GSI između 33 i 37 nego tvrditi da on iznosi GSI=35. Dijagram se ne odnosi na strukturno kontrolisane nestabilnosti. U situacijam kada su oslabljene planarne površi prisutne i nepovoljno orijentisane u odnosu na iskop one najviše utiču na stabilnost. Smičuća čvrstoća diskontinuiteta u stenskoj masi koja je podložna raspadanju se može smanjiti tokom vremena. U slučaju rada sa stenama koje se nalaze u umerenoj ili veoma lošoj kategoriji pomeranje za jednu kategoriju udesno je moguće u slučaju mokrih uslova. Uticaj podzemne vode se uzima u obzir prilikom analize stabilnosti. <u>STRUKTURA</u>	 VRLO DOBAR veoma hrapave, sveže neizmenjene površine 	 DOBAR hrapave, blago izmenjene površine, sa qvožđevitim flekama 	A UMEREN d glatke, umereno izmenjene površine	 LOŠ ispolirane, veoma izmenjne površine sa čvrstom ispunom od nezaobljenih fragmenata 	VEOMA LOŠ ispolirane, veoma izmenjne površine sa mekom glinovitom ispunom
INTAKTNA ILI MASIVNA - masivna stenska masa sa malim brojem diskontinuiteta na velikom rastojanju	90			N/A	N/A
BLOKOVSKI IZDELJENA - dobro uzglobljena neoštećena stenska masa koja se sastoji od kockastih fragmenata ograničenih sa tri upravne familije pukotina		70 60			
VEOMA BLOKOVSKI IZDELJENA - uzglobljena delimično oštećena stenska masa koja se sastoji od uglastih fragmenata oivičenih sa četiri ili više familije pukotine		5	0		\langle / \rangle

Slika 6.9. GSI dijagram sa šest strukturnih kategorija i označenom vrednošću stenske mase na kosini (Hoek i Marinos, 2000, iz Berisavljević i dr, 2021)

Svojstvo pukotina	Opis	Bodovanje	Familija I	Familija II	Familija III	Usvojen broj bodova
	vrlo mala < 1 m	6	Х		X	
Kontinualnost	mala 1-3 m	4				
(prostiranje u	srednja 3-10 m	2		Х		2
dubinu mase)	velika 10-20 m	1				
	vrlo velika >20 m	0				
	zatvorene	6	X			
	< 0,1 mm	5				
Zev	0,1-1 mm	4		Х	Х	4
	1-5 mm	1				
	> 5 mm	0				
	vrlo hrapave	6				
	hrapave	5	Х		Х	
Hrapavost	umereno hrapave	3		Х		3
	glatke	1				
	klizave	0				
	bez ispune	6	Х	X		
Ispuna (u	tvrda ispuna < 5 mm	4			Х	
skladu sa	tvrda ispuna > 5 mm	2				4
zevom)	meka ispuna < 5 mm	2				
	meka ispuna > 5 mm	0				
	neizmenjene	6				
Izmana zidava	neznatno izmenjene	5				
nultatina	umereno izmenjene	3	Х	Х	Х	3
рикоппа	jako izmenjene	1				
	potpuno izmenjene	0				

Tabela 6.2. Bodovanje stanja pukotina prema RMR₈₉ klasifikaciji (Bieniawski, 1989)

Vrednost parametra stanja pukotinskih površi Jcond₈₉ iznosi 16. Tom prilikom, usvajane su najniže vrednosti za svojstva pukotina, a ne vrednosti najnepovoljnije orijentisane familije, s obzirom na pretpostavku o izotropnosti stenske mase. Sa slike 6.9. se vidi da se vrednost GSI kreće u rasponu 40-46. Sa kvantifikovanog dijagrama je očitana vrednost GSI od 43, koja je usvojena za proračun MC parametara smičuće čvrstoće.

						65
GEOLOŠKI INDEKS ČVRSTOĆE						
Na osnovu karakteristika stenske mase odabrati odgovarajuće polje na dijagramu. Proceniti prosečnu vrednost geološkog indeksa čvrstoće (GSI). Alternativno, na osnovu RQD vrednosti i kvaliteta pukotina (Bieniawski, 1989), proceniti GSI kao GSI = 0,5RQD + 1,5Jcond89, na osnovu vrednosti na vertikalnoj i horizontalnoj osi.						
Za msivne intaktne stene sa GSI>75 proveriti mogućnost ljuskanja. Za stenu sa GSI>75 i pukotinama na velikim rastojanjima dominiraju strukturni lomovi i GSI ne treba koristiti.	VEOMA DOBAR	DOBAR	UMEREN	LOŠ	VEOMA LOŠ	
STRUKTURA SMA	NJENJE	' KVALITE	' ETA PUKO	TINA	\Rightarrow	
822038	11		11	11	$\Lambda \Lambda$	

Slika 6.10. Kvantifikovani GSI dijagram sa naznačenom vrednošću stenske mase na kosini (prema Hoek i dr, 2013)

6.1.2. Procena Q vrednosti

Vrednost RQD-a je već usvojena i iznosi 39. Vrednost indeksa broja familija pukotina *Jn* iznosi 12, zahvaljujući činjenici da su zastupljene tri familije pukotina i brojne pojedinačne pukotine. Indeks hrapavosti pukotina *Jr* je određen poredeći profile pukotinskih površi,

prikazane na slici 6.6, sa standardnim profilima prikazanim na slici 4.1. Usvojen je za familiju pukotina sa najnižom vrednošću JRC-a, koja je ujedno i najnepovoljnije orijentisana, niz kosinu

(familija F₂). Indeks izmene pukotinskih površi Ja ima vrednost 2. Određen je za prvu kategoriju

stenske mase (videti tabelu 4.4.) kod koje je ostvaren kontakt zidova pukotina koje ne sadrže ispunu, već samo mineralnu prevlaku, tj skramu.

Vrednost faktora prisustva vode *Jw* je procenjena na 1 (videti tabelu 4.5.), s obzirom da je iskop potpuno suv, bez prisustva vode. Treba imati na umu da je kartiranje kosine vršeno u suvom periodu, te da prilikom intenzivnih padavina može doći do lokalnog procurivanja vode iz pukotina. Ipak, stenska masa je dobro ocedita, a pojava izvora u blizini nema. Faktor redukcije napona SRF je procenjen na 2,5 (videti tabelu 4.6.). Pritom, na kosini nema prisustva slabih, rasednih zona, kao ni stenskih masa koje potencijalno bubre ili ispoljavaju pojave vremenski zavisnih plastičnih deformacija. Stenska masa ispoljava krto naponskodeformacijsko ponašanje, te je odnos napona i njene čvrstoće relevantan. Kako je kosina veoma niska, vrednosti svestranih pritisaka su male, te je usvojena vrednost SRF faktora za najveći

odnos čvrstoće i napona, tj. za stensku masu blizu površine terena.

Q vrednost se može proceniti iz jednačine (12):

$$Q = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{SRF} = \frac{39}{12} \times \frac{2}{2} \times \frac{1}{2,5} = 1,3$$

Na kosini je izvršena i Q-slope klasifikacija. Pritom, vrednosti parametara RQD, Jn, Jr i Ja ostaju iste. Faktor orijentacije O (videti tabelu 4.7.) je procenjen na 0,75, za nepovoljnu orijentaciju diskontinuiteta (s obzirom da familija F₂ pada niz kosinu, međutim ne izaziva nestabilnosti), dok faktor atmosferskih uslova Jwice (tabela 4.8.) ima vrednost 0,7, za kompetentnu stenu stabilne strukture u vlažnim uslovima. Parametar *SRFslope* je procenjen na 2,5, za stensku masu u umerenom do visokom domenu odnosa čvrstoće i napona, koja je pretrpela neznatno rastresanje usled iskopa (videti tabelu 4.9.). Q-slope vrednost je dobijena iz jednačine (15):

$$Qslope = \frac{RQD}{Jn} \times \left(\frac{Jr}{Ja}\right)_{O} \times \frac{Jwice}{SRFslope} = \frac{39}{12} \times \left(\frac{2}{2} \times 0,75\right) \times \frac{0,7}{2,5} = 0,6825$$

Optimalan ugao nagiba kosine, prema jednačini (16) iznosi:

$$\beta = 20 \log_{10} Qslope + 65^\circ = 20 \log_{10} 0,6825 + 65^\circ = -3^\circ + 65^\circ = 62^\circ$$

Ovo je solidno slaganje sa izmerenim stvarnim uglom nagiba kosine, koji iznosi 65-68°.

6.2. Rezultati fotogrametrijske analize kosine

Radi boljeg razumevanja primene fotogrametrije za analizu strukturnog sklopa stenske mase, u kraćim crtama će biti prikazana teorijska osnova postupka formiranja 3D digitalnog modela na osnovu primene bezkontaktne optičke metode, odnosno fotogrametrije.

Fotogrametrija spada metodu daljinske detekcije čiji se princip zasniva na projektovanju optičkog signala na realan trodimenzionalni predmet (u našem slučaju površ kosine) i detektovanje reflektovane informacije sa tog predmeta. Ideja same metode bazirana je na stereovizijskom principu, koji podrazumeva projektovanje najmanje dve slike istog objekta, snimljene pod različitim uglovima, čime se stvara efekat treće dimenzije, tj. dubine. Na osnovu poznavanja pozicije svake kamere i parametara kamere (npr. žižna daljina) moguće je odrediti rastojanja na svakoj tački objekta, na osnovu čega se uvodi treća dimenzija.

U ovom radu je korišćen postupak SfM (Structure from Motion) fotogrametrije, kod koga, za razliku od gore pomenutog stereo postupka, na samom početku procesa nije potrebno poznavati položaje i parametre kamere, već se oni određuju primenom specijalnog algoritma. Algoritam na početku procesa prepoznaje tzv. ključne (referentne) tačke na svakoj fotografiji, na osnovu kojih se sa dvodimenzionalnih fotografija, koje među sobom moraju imati odgovarajući završni i bočni preklop (obično 60-80%), mogu odrediti položaji kamera (vrši se tzv. poravnavanje kamera). Kod SfM postupka parametri kamere se izračunavaju tokom samog procesiranja fotografija na osnovu detektovanih karakterističnih obeležja-tačaka i taj proces se još naziva autokalibracija. SfM postupak je korišćen u ovom radu, a implementiran je u programski paket Agisoft Metashape. Na slici 6.11. prikazani su položaji kamere u odnosu na snimljenu kosinu.

Sa prikupljenih fotografija se izdvajaju ključna obeležja, takozvani deskriptori, koji se opisuju pomoću algoritma, koji prepoznaje njihova podudaranja.

Slika 6.11. Položaji kamere u odnosu na kosinu

Zatim se na osnovu određivanja spoljašnjih i unutrašnjih parametara kamere formira retki oblak tačaka (oblak tačaka niske rezolucije), slika 6.12. U narednom međukoraku, ovaj oblak je "filtiran", tj. uklonjen je određeni broj tačaka (oko 10% od ukupnog broja) za koje program smatra da nisu pouzdano rekonstruisane. Rekonstruisani model se zatim može pozicionirati u prostoru u realan, svetski koordinatni sistem preko GCP (Ground Control Points). Za potrebe ovog rada korišćen je lokalni koordinatni sistem, pri čemu je objekat stavljen u odgovarajuću razmeru na osnovu poznatih rastojanja između markera označenih na terenu (plusevi u crvenom spreju na licu kosine).

Da bi se dopunio redak oblak tačaka, povećanje gustine se sprovodi odgovarajućim algoritmom koji generiše dubinsku mapu piksela slike. Na ovaj način dobija se gusti oblak tačaka (oblak tačaka visoke rezolucije), slika 6.13. Na tačnost prikazanog postupka utiče

nekoliko faktora, od kojih su najznačajniji: dimenzije objekta koji se fotografiše, broj fotografija i njihovo preklapanje i rezolucija fotografija. Manje dimenzije objekta podrazumevaju i manje rastojanje od mesta snimanja fotografija, što povećava preciznost, a samim tim i tačnost merenja. U principu veći broj fotografija, sa što većim preklopom omogućiće dobijanje kvalitetnijeg podatka, tj. preciznijeg položaja tačaka u prostoru.

Kosina je snimljena dronom DJI Air 2S, koji poseduje kameru od 20 MPix sa 1-inch CMOS senzorom. Putanja snimanja podrazumevala je višestruke manuelne prelete u

horizontalnom i vertikalnom pravcu (u odnosu na lice kosine) i prekrivanje površine od oko 552 m2 sa 195 fotografija. Rezolucija snimanja iznosila je 2,01 mm/pix.

U narednom koraku, a na osnovu gustog oblaka tačaka, formiran je poligonalni trodimenzionalni model (3D mesh), nakon čega se formira tekstura objekta. Detalj kosine sa realnom teksturom prikazn je na slici 6.14.

Digitalni elevacioni model (DEM) rekonstruisan je takođe na osnovu gustog oblaka tačaka sa rezolucijom od 4,03 mm/pix, odnosno 6,17 tačaka/cm², slika 6.15.

Slika 6.12. Retki oblak tačaka (111 456 tačaka)

Slika 6.13. Gusti oblak tačaka (65 621 141 tačaka)

Slika 6.14. Detalj 3D modela sa prikazanom opcijom za merenje rastojanja

Slika 6.15. Digitalni elevacioni model sa položajem poprečnih preseka

6.2.1. Analiza strukturnog sklopa na oblaku tačaka

Nakon izrade trodimenzionalnog modela, gusti oblak tačaka je u .xyz ekstenziji izvežen u program CloudCompare. Ovaj "open source" program je besplatan i veoma je pogodan za rad sa oblacima tačaka. Za njega postoji veliki broj tzv. dodataka (plugin-ova), između ostalih i za potrebe analiziranja strukturnog sklopa stenske mase. Za potrebe rada korišćen je programski dodatak "Compass", koji omogućava da se za bilo koji deo oblaka tačaka manuelno izmere elementi pada (azimut i padni ugao), slika 6.16. Osenčene zelene površine, predstavljaju planaru, na kojoj je prikazan i vektor normale. Ovu opciju je potrebno koristiti na "ravnim delovima" oblaka tačaka, tj. onim delovima gde je jasno da se radi o pukotinama. Ovo omogućava da se na virtuelan način izmeri veliki broj elemenata padova na lokacijama, koje konvencionalnim terenskim merenjem, nisu dostupne. Konturni dijagram elemenata padova pukotina merenih pomoću opcije "Compass" prikazan je na slici 6.17. Uočava se odlično poklapanje sa elementima pada merenim geološkim kompasom, koji su prikazani na konturnom dijagramu na slici 6.5.

Slika 6.16. Princip merenja elemenata pada pomoću opcije "Compass"

(Color		Density Concentrations				
			0.00		1.30		
			1.30		2.60		
			2.60	-	3.90		
			3.90	-	5.20		
			5.20	-	6.50		
			6.50	-	7.80		
			7.80	-	9.10		
			9.10	-	10.40		
			10.40	-	11.70		
			11.70		13.00		
	Maxim	um Density	12.79%				
	Co	ntour Data	Pole Vecto	ors			
(Contour D	Distribution	Fisher				
	Counting	Circle Size	1.0%				
	Color	Dip	Dip Dir	ecti	on Label		
		Use	er Planes				
1		68	13	0	Kosina		
		Mean	Set Plane	5			
1.00		42	10	2			
TIM		72	72 275				
2m		12					
2m 3m		82	33	3			
2m 3m		82 Plot Mode	33 Pole Vecto	3 ors			
2m 3m	Ve	82 Plot Mode	33 Pole Vecto 40 (40 Ent	3 ors ries)			
2m 3m	Ve	82 Plot Mode ector Count lemisphere	33 Pole Vecto 40 (40 Ent Lower	3 ors ries)			

Slika 6.17. Konturni dijagram EP pukotina merenih pomoću opcije "Compass", iz oblaka tačaka

Pored manuelnog, korišćen je i postupak polu-automatskog izdvajanja familija pukotina na osnovu rekonstruisanog oblaka tačaka. Za ove potrebe korišćen je besplatan program DSE (Discontinuity Set Extractor). U programu DSE su nakon klasifikovanja i podele oblaka tačaka u pojedine familije pukotina, određena normlana rastojanja između njih, kao i kontinualnost pukotina unutar pojedinih familija. U nastavku će se ukratko prikazati metodologija rada u ovom programu.

Pre same primene navedenog programa, u programu CloudCompare smanjena je rezolucija gustom oblaku tačaka (na 1 500 000 tačaka) i analiziran je samo jedan njegov deo, u kom je stenska masa najintezivnije ispucala i izotropna, slika 6.18.

Slika 6.18. Isečeni deo oblaka tačaka korišćen za poluautomatsku strukturnu analizu

Metodologija izdvajanja familija pukotina u programu DSE zasnovana je na vektorskoj i statističkoj analizi i obavlja se u nekoliko koraka:

- 1. Određivanje lokalne zakrivljenosti i vektora normale;
- 2. Statistička analiza polova ravni;
- 3. Analiza klastera

Da bi se odredila lokalna zakrivljenost, odnosno formirali klasteri (planare), potrebno je odrediti skupove tačaka slične orijentacije. Na početku procesa se u okolini jedne tačke definiše podskup sa određenim brojem susednih tačaka (npr. 30). Za tako određeni podskup se formira najbolje poklopljena ravan u prostoru, za koju se odredi normalni vektor. Ovo se ponavlja za susedne tačke (susedne podskupove). Nakon toga, se može (a ne mora, što je ostavljeno kao opcija u programu) izvršiti test komplanarnosti da bi se utvrdilo da li sve tačke određenog podskupa pripadaju datoj ravni. Polovi normala tako definisanih ravni (podskupovi tačaka) se nanose na sterografsku mrežu pri čemu se dobijaju gustine polova u svakom delu stereo mreže, slika 6.19.a. Nakon toga se prema određenoj proceduri (kernel density estimation)

određuju gustine polova koje se prikazuju neparametarskim funkcijama gustine raspodele, slika 6.19.b. Gustina raspodele polova se može prikazati i u tri dimenzije (slika 6.19.c). Postupak je propraćen unosom dva parametra: raspon uglova u kojima se nalaze normale odgovarajućih planara i maksimalnim brojem familija pukotina koje se mogu izdvojiti na osnovu ove analize. Zatim se uvidom u stereomrežu mogu izbrisati dodeljene familije pukotina, u slučaju da imaju pripisanu malu gustinu polova. Sa slike 6.19. vidi se veoma dobro poklapanje sa konturnim dijagramima dobijenim iz geološkog kompasa (slika 6.5.) i manuelnim očitavanjem sa oblaka

tačaka (slika 6.17.). Ipak, sa automatskim očitavanjem elemenata pada planara treba biti obazriv, s obzirom da je u ovom slučaju čitavo lice kosine pripisano familiji J_1 , što ne odgovara u potpunosti realnosti.

Izgled oblaka tačaka nakon izvršene klasterske analize prikazan je na slici 6.20.

Nakon definisanja familija pukotina na trodimenzionalnom modelu, dopunskim analizama mogu se odrediti normalna rastojanja između pojedinih klastera (planara) određene familije, kao i njihova kontinualnost. Za ove potrebe koristi se opšta skalarna jednačina ravni u obliku:

$$Ax + By + Cz + D = 0 \tag{33}$$

gde su: $A, B \in C$ komponente vektora normale na ravan; D - konstanta koja definiše

položaj ravni u prostoru (rastojanje od koordinatnog početka).

Slika 6.19. Gustina polova ravni prikazana na stereografskoj mreži: a) koncentracije polova u različitim bojama; b) gustine sa izolinijama; c) 3D prikaz slike pod 6.11.b

Slika 6.20. Klasifikovani oblak tačaka sa izdvojenim familijama pukotina

Za svaku izdvojenu familiju pukotina računa se rastojanje između susednih klastera -

parametar *D* iz jednačine (33). Kontinualnost pukotina se određuje na taj način što se pojedini klasteri jedne familije (sa istom orijentacijom u prostoru), koji imaju isti ili sličan parametar *D*, objedinjuju u jednu "veću" planaru njihovim okonturivanjem, tj. formiranjem zatvorene anvelope, slika 6.21. Za tako formiranu pukotinu kontinualnost se automatski određuje za tri slučaja (prostim merenjem rastojanja između dve tačke): po pravcu najduže tetive, u pravcu pada planare i u pravcu njenog pružanja.

Slika 6.21. Formiranje pukotina od više klastera iz jedne familije

Na slici 6.22. prikazani su histogrami kontinualnosti pukotina iz pojedinih familija. Pored toga, na dijagramima je prikazana i najbolje poklopljena negativna eksponencijalna raspodela (crvena linija). U redovima su prikazane familije pukotina, a u kolonama različiti načini merenja kontinualnosti pukotina (u pravcu pada, pružanja i najduže tetive). Takođe, u poslednjoj koloni je prikazana veličina prosečne površine pukotina pojedinih familija.

Slika 6.22. Histogrami kontinualnosti za izdvojene familije pukotina

Rezultati proračuna normalnog rastojanja i kontinualnosti prikazani su i tabelarno (tabele 6.3. i 6.4.). Automatskim postupkom je izdvojeno pet familija pukotina, dok je terenskim merenjem izdvojeno tri. Pritom, familiji J₁ odgovara familija F₁, J₄ je F₂, a J₅ i J₂ predstavljaju F₃. Najbolje poklapanje je prisutno kod familije F₁ (J₁), gde je terenskim kartiranjem određeno normalno rastojanje 10-20 cm, a pomoću programa DSE 0,14 cm. Kod ostalih familija, program DSE daje nešto veća rastojanja. Podaci o kontinualnosti se ne poklapaju najbolje sa terenskim podacima (tabela 6.2.)

Tabela 6.3. Normalna rastojanja pukotina u okviru familija J_1 - J_5

Familija pukotina	Srednja vrednost (m)	Min (m)	Max (m)	Modus (m)	Standardna devijacija (m)
\mathbf{J}_1	0,14	0,012	0,63	0,012	0,11
J_2	0,17	0,011	0,94	0,011	0,14
J_3	0,15	0,011	1,57	0,011	0,15
J_4	0,44	0,012	3,19	0,011	0,57
J_5	0,25	0,010	1,45	0,010	0,27

Familija pukotina	Po padu planare (m)	Po pružanju (m)	Maksimalna dužina tetive (m)	Površina zatvorene anvelope (m ²)
J_1	0,39	0,40	0,53	0,31
J_2	0,30	0,40	0,46	0,10
J_3	0,36	0,31	0,43	0,09
J_4	0,28	0,29	0,37	0,05
J_5	0,31	0,33	0,41	0,07

Tabela 6.4. Prosečne vrednosti kontinualnosti pukotina familija J₁-J₅

RQD je moguće odrediti i na osnovu srednjih vrednosti normalnih rastojanja unutar jedne familije, određenih automatski pomoću softvera DSE. Postupak je zasnovan na jednačinama (13) i (14) i identičan je onom već sprovedenom za terenski merena rastojanja:

$$Jv = \sum_{i=1}^{n} \frac{1}{S_i} = \frac{1}{0,14} + \frac{1}{0,17} + \frac{1}{0,15} + \frac{1}{0,44} + \frac{1}{0,25} = 26$$

$$RQD = 110 - 2,5Jv = 110 - 2,5*26 = 110 - 65 = 45$$

RQD dobijen iz terenski merenih rastojanja između pukotina iznosi 39, što je solidno poklapanje sa gore navedenom vrednošću od 45.
7. ODABIR MC PARAMETARA STENSKE MASE

Proračun kohezije c i ugla smičuće otpornosti φ stenske mase, preko GSI klasifikacije i HB kriterijuma loma, vršen je po jednačinama (23) i (24). Proračun je izvršen pomoću softverskog alata RSData, paketa Rocscience. Odabir parametara je izvršen za oštećenu i neoštećenu stensku masu, za vrednosti faktora oštećenja D koje iznose 0,7 i 0, respektivno. Vrednosti ostalih ulaznih podataka su:

- Jednoaksijalna čvrstoća na pritisak intaktne stene $\sigma_{ci} = 70$ MPa
- Geološki indeks čvrstoće GSI = 43
- Materijalni parametar intaktne stene $m_i = 10$. Za dijabaz, vrednost ovog parametra varira u rasponu 15 ± 5 (videti tabelu 3.1.). Odabrana je najniža vrednost, $m_i = 10$, s obzirom na intenzivnu izmenjenost čitave stenske mase.
- Visina kosine, od koje zavise gornja granična vrednost svestranog pritiska σ_{3max} i njena normalizovana vrednost σ_{3n} , koje figurišu u jednačinama (23) i (24). Visina kosine je procenjena na 5 m, što predstavlja prosečnu dubinu do potencijalnih kliznih površi na kosini.

Nelinearne HB anvelope loma za oštećen dijabaz, u poljima normalnih i smičućih i glavnih napona, prikazane su na slici 7.1. Takođe su plotovane i linearne MC anvelope loma za odgovarajući nivo napona. Za prethodno pomenute vrednosti parametara σ_{ci} , m_i , *GSI i D*, dobijene su vrednosti ugla smičuće otpornosti $\varphi^{eq} = 56^\circ$, kohezije $c^{eq} = 0,146$ MPa i jednoaksijalne čvrstoće na pritisak stenske mase $\sigma_c = 1,042$ MPa. Za neoštećen dijabaz (slika 7.2.) dobijene su vrednosti: $\varphi^{eq} = 61^\circ$, $c^{eq} = 0,324$ MPa i $\sigma_c = 2,782$ MPa. Očigledan je veliki uticaj faktora oštećenja *D* na redukciju fizičko-mehaničkih karakteristika stenske mase, pre svega kohezije i jednoaksijalne čvrstoće na pritisak stenske mase.

Proračun MC parametara (odnosno "frikcione" i "kohezivne" komponente stenske mase) prema Q klasifikaciji izvršen je po jednačinama (31) i (32). Pritom, korišćeni su ulazni podaci iz Q, a ne Q-slope klasifikacije, kako bi se očuvala istovetnost sa originalnim formulacijama.

Usvojeni parametri Q klasifikacije su navedeni u potpoglavlju 6.1.2.

$$FC = \varphi = \operatorname{arctg}\left(\frac{Jr}{Ja} \times Jw\right) = \operatorname{arctg}\left(\frac{2}{2} \times 1\right) = \operatorname{arctg}\left(1\right) = 45^{\circ}$$

$$CC = c = \frac{RQD}{Jn} \times \frac{1}{SRF} \times \frac{\sigma_{ci}}{100} = \frac{39}{12} \times \frac{1}{2,5} \times \frac{70}{100} = 0,91 MPa$$

Criteri
teri
~
nvel
mb F

Dijabaz oš

68

Slika 7.1. Proračun MC parametara za oštećen dijabaz (D = 0,7)

Mohr Coulo

	-	14	-	12.62.11	ę	-	100		1.00	1 en	-	1		00	-		-	 	8	n
5	0.3		0.15	Sio	100	391	10	2.72	000		0.50	0.00	130		200	0	6	\$ 10	ä	
239	2		21	Sec		4.00	5	13	34		8	710	8		8					
						25						00								

Slika 7.2. Proračun MC parametara za neoštećen dijabaz (D = 0)

Pristup Q klasifikacije daje nešto niže vrednosti ugla smičuće otpornosti od GSI pristupa (45° naspram 56°, za oštećenu, i 61° za neoštećenu stensku masu). S druge strane, daje znatno veću vrednost kohezije (0,91 MPa naspram 0,146 MPa i 0,324 MPa). Navedeno ukazuje na veoma loše poklapanje rezultata posmatranih pristupa. Treba imati na umu da MC parametri dobijeni na dva posmatrana načina ne zavise od istih ulaznih parametara. Kod GSI pristupa, φ^{eq} i c^{eq} zavise od jednoaksijalne čvrstoće na pritisak intaktne stene, materijalnog parametra intaktne stene m_i , stepena ispucalosti i stanja pukotinskih površi (izraženih preko GSI vrednosti), naponskog stanja na kosini (izraženog preko visine kosine, odnosno parametara σ_{3max} i σ_{3n}) i oštećenosti usled iskopa (faktor oštećenja D). Q pristup kao ulazne podatke koristi: jednoaksijalnu čvrstoću na pritisak intaktne stene; stepen ispucalosti i stanje pukotinskih površi (izražen faktorom Jw, koji u ovom konkretnom slučaju nema uticaja); naponsko stanje stenske mase (izraženo faktorom

redukcije napona *SRF*). Oštećenje stenske mase usled iskopa nema uticaj kod Q pristupa, međutim ono može biti uzeto u obzir korišćenjem parametra *SRFslope* koji obuhvata između ostalog i efekte miniranja. Zanimljivo je da ugao smičuće otpornosti po GSI pristupu zavisi od svih gorepomenutih parametara (izuzev čvrstoće na pritisak intaktne stene) dok po Q pristupu on zavisi samo od stanja pukotinskih površi, a ne i od nivoa normalnog napona, što ne odgovara realnosti. Takođe, frikciona komponenta FC uopšte ne zavisi od kohezivne komponente CC, odnosno promenom CC ne menja se FC. Ovo je u skladu sa prethodno iznetim Bartonovim mišljenjem da se kohezivna i frikciona komponenta angažuju potpuno odvojeno, za različite nivoe deformacija.

Ono što posebno treba naglasiti je uticaj naponskog stanja na veličine parametara. Na strani 40 je pokazano da sa porastom gornje granične vrednosti svestranog pritiska σ_{3max} (koja je proporcionalna težini nadsloja, odnosno dubini tunela/visini kosine) ugao smičuće otpornosti opada a kohezija raste. Tako na primer, brza analiza u programu RSData pokazuje da se za istu stensku masu ($\sigma_{ci} = 70$ MPa, $m_i = 10$, GSI = 43 i D = 0) u tunelu na dubini od 200 m, dobijaju parametri ekvivalentni onima iz Q pristupa: c = 0.9 MPa i $\varphi = 45^{\circ}$. S druge strane, Q pristup

ne omogućava takvu fleksibilnost pri radu sa vrednostima napona, s obzirom da *SRF* faktor koji u obzir uzima naponsko stanje ima diskretne vrednosti u veoma ograničenom rasponu (tabela 4.6.). U tunelu na dubini 200 m, u domenu visokog napona, vrednost faktora SRF varira u granicama 0,5-2,0, što je manje od vrednosti SRF = 2,5, za stensku masu na površini. Ovo ukazuje na višu koheziju, međutim teško je precizno proceniti parametar *SRF*. U rasponu 0,5-2,0 on može dati i do 4 puta različite vrednosti za koheziju koristeću jednačinu (32). Još jedan interesantan podatak je da parametar *SRFslope* iz Q-slope klasifikacije raste sa porastom težine

nadsloja (visine kosine), samim tim smanjujući koheziju. Navedeno ukazuje na nedovoljan tretman naponskog stanja kod Q pristupa i slabu podobnost jednačina (31) i (32) za korišćenje na kosinama.

U nastavku će biti prikazana globalna analiza stabilnosti posmatrane kosine korišćenjem dva seta parametara dobijenih različitim načinima. Analiza je izvršena pomoću softverskog alata Slide, paketa Rocscience, na preseku 1 (videti sliku 6.15.) koji se nalazi u kvazihomogenoj zoni I, gde je vršen odabir parametara.

Tom prilikom, odabrana je uprošćena Bišopova metoda granične ravnoteže. Ona je pogodna za analizu kružne klizne površine s obzirom da zadovoljava uslove ravnoteže momenata. Pretpostavljena je kružna klizna površina, što je razumljivo imajući u vidu da je stenska masa homogena i izotropna. Potencijalna klizna tela su podeljena na 50 lamela.

Korišćen je Auto Refine Search postupak nalaska centra rotacije kliznih tela. Na kosini nema podzemne vode. Visina kosine na preseku 1 je 9 m, a ugao nagiba 68°. Nagib šumovitog terena iznad kosine iznosi 12°.

Globalna analiza stabilnosti kosine izvršena sa parametrima dobijenim preko GSI klasifikacije prikazana je na slici 7.3. Tom prilikom, usvojena je vrednost faktora oštećenja D = 0,7 na dubini od 1 m u stenskoj masi. Dobijena je visoka vrednost faktora sigurnosti za kosinu, Fsmin = 8,30, koja ukazuje na to da nema opasnosti od pojave opšteg loma stenske mase. Nisu prikazane sve klizne površi s obzirom da imaju visoke vrednosti Fs.

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Water Surface	Ru
Dijabaz neostecen		25	Mohr- Coulomb	324	61	None	0
Dijabaz ostecen		25	Mohr- Coulomb	146	56	None	0

ð

Slika 7.3. Globalna analiza stabilnosti kosine (koristeći MC parametre dobijene iz GSI klasifikacije) na preseku 1

Na slici 7.4. prikazana je globalna analiza stabilnosti kosine na preseku 1, uz korišćenje MC parametara dobijenih iz Q klasifikacije. Upadljivo je odsustvo zone oštećenja stenske mase. Dobijeni minimalni faktor sigurnosti Fsmin = 19,84 je više nego dvostruko veći od odnog dobijenog putem parametara iz GSI klasifikacije, što se može objasniti značajno većom vrednošću kohezije (0,91 MPa naspram 0,324 MPa i 0,146 MPa).

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Water Surface	Ru
Dijabaz		25	Mohr- Coulomb	910	45	None	0

Slika 7.4. Globalna analiza stabilnosti kosine (koristeći MC parametre dobijene iz Q klasifikacije) na preseku 1

8. ZAKLJUČAK

Zastupljeno je mišljenje - ispravno – da su stenske mase najkompleksniji inženjerski materijal sa kojim čovek ima posla. Izbor između pristupa kontinuuma i diskontinuuma, kao i metode odabira parametara čvrstoće smicanja u slučaju pristupa ekvivalentnog kontinuuma nije lak i zavisi od mnogih faktora, od kojih neki nisu geotehničke prirode (raspoloživo vreme za vršenje analize, raspoloživa finansijska sredstva i softverski alati i dr.). S druge strane, naši inženjerski izbori su mnogo važniji od onoga što većina ljudi misli, a problemima odabira parametara diskutovanih u ovom radu treba prići na veoma obazriv, detaljan i sveobuhvatan način. Iz tog razloga je i napisan ovaj rad, kao pokušaj da se proveri pristup procene frikcione i kohezivne komponente iz Q klasifikacije, jedan relativno nov i, na teritoriji Srbije, do sada retko upražnjavan postupak u odabiru MC parametara čvrstoće smicanja.

Kao osnovne prednosti ovog postupka navedene su njegova jednostavnost, mogućnost upotrebe direktno na terenu, bez programa, fundamentalni značaj relacija iz koje se dobijaju parametri čvrstoće, kao i njihovo realno fizičko značenje. Detaljno je obrađen i pristup pomoću GSI klasifikacije i pratećeg HB kriterijuma loma, koji je u praksi dominantan i čija je glavna prednost uzimanje u obzir širokog raspona parametara, počev od karakteristika intaktnih stena, preko stanja stenskih masa u sklopu terena i njihove oštećenosti usled iskopa, do nivoa napona za koji se vrši odabir parametara čvrstoće. Takođe, HB pristup je nastao na osnovu eksperimentalnih ispitivanja, dok su relacije za izračunavanje FC (31) i CC (32) direktna posledica klasifikacije.

Kako se oba načina koriste za isti tip stenske mase, koja se može predstaviti ekvivalentnim kontinuumom, ostaje da se na konkretnom primeru stenske mase odrede MC parametri koristeći dva analizirana pristupa, i na taj način uporede. Najvažniji zaključci koji mogu da se izvuku iz izvedene uporedne analize su: Q pristup daje nešto nižu vrednost ugla smičuće otpornosti φ , ali značajno višu vrednost kohezije c, što uzrokuje i višu vrednost faktora sigurnosti kosine. Samim tim, GSI pritup je konzervativniji. Pored razlika između dva pristupa

navedenih u prethodnom pasusu, uputno je navesti i one manje očigledne, do kojih se došlo tokom izrade master rada. Ulazni podaci koji figurišu u Q klasifikaciji i jednačinama za procenu FC (31) i CC (32) imaju diskretne vrednosti, relativno su jasno definisani i laki za određivanje, što eliminiše nedoumice prilikom njihovog odabira. Jedini parametar čija varijacija može biti znatna je jednoaksijalna čvrstoća na pritisak intaktne stene σ_{ci} , što je uzrokovano relativnom nepouzdanošću korišćenih metoda (Šmitov čekić i Point Load Test-PLT). Ovo se može prevazići izvođenjem standardnog opita jednoaksijalne čvrstoće na cilindričnim, obrađenim

uzorcima. S druge strane, parametar koji figurišu u GSI klasifikaciji i HB kriterijumu loma faktor oštećenja D može biti težak i nepouzdan za procenu, dok je krajnji rezultat senzitivan na njegovu promenu (primer je razlika u vrednostima c i φ za različite vrednosti D, prikazano na slikama 7.1. i 7.2.). Ovo je detaljnije obrađeno na kraju potpoglavlja 3.3. Može se zaključiti da su osnovne prednosti Q postupka jednostavnost i jednoznačna određenost ulaznih parametara, dok je njegova velika mana nedovoljno poklanjanje pažnje uticaju veličine napona na vrednosti parametara čvrstoće i slaba podobnost za upotrebu na kosinama. Prednost GSI pristupa je uzimanje u obzir velikog broja faktora i raspona vrednosti u kojima se oni mogu naći, zasnovanost pristupa na eksperimenantalnim podacima, odgovarajući tretman uticaja naponskog stanja i mogućnost primene kod raznih objekata u stenskim masama: kosina, tunela i temelja. Najveća mana je nepouzdanost procene faktora oštećenja D i njegov značajan uticaj na konačne vrednosti MC parametara.

Iako je dobijena vrednost kohezije c = 0,91 MPa veoma velika i teško se može pripisati stenskoj masi na posmatranoj kosini, za detaljniju studiju upoređivanja dve metode i dobijanje merodavnijih rezultata, bilo bi neophodno izvesti brojne uporedne analize na kosinama izvedenim različitim metodama, različitih visina, u stenskim masama raznog kvaliteta. Do tada, ostaje da u praksi ne zanemarujemo Q pristup i koristimo isključivo GSI, ako ni zbog čega drugog a onda zbog svoje jednostavnosti i lakoće primene.

Mesto i datum završetka rada

Svojeručni potpis studenta

Beograd, 5.7.2023.

LITERATURA

Balmer, G. (1952) A general analytical solution for Mohr's envelope. Am Soc Test Mat 52:1260–1271

Barton N, Lien R, Lunde J. (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6:189–236

Barton N. (1987) Rock mass classification, tunnel reinforcement selection using the Qsystem. Proceedings of the ASTM Symposium on Rock Classification Systems for Engineering Purposes. Cincinnati, Ohio.

Barton N. (1995) The influence of joint properties in modelling jointed rock masses. Keynote Lecture, 8th Congress of ISRM, Tokyo, vol. 3. Rotterdam: Balkema.

Barton, N. (2002) Some new Q-value correlations to assist in site characterization and tunnel design. Int. J. Rock Mech. & Min. Sci. Vol. 39/2:185-216.

Barton N, Pandey SK. (2011) Numerical modelling of two stoping methods in two Indian mines using degradation of c and mobilization of ϕ based on Q-parameters. International Journal of Rock Mechanics and Mining Sciences;48(7), 1095–1012

Barton, N.R. (2013) Shear strength criteria for rock, rock joints, rockfill and rock masses: problems and some solutions. J. Rock Mech. Geotech. Eng. 5 (4), 249e 261

Barton, N. (2014) Lessons learned using empirical methods applied in mining. Keynote lecture. 1st. Int. Conf. on Applied Empirical Methods in Mining. Lima, Peru, 24p.

Barton, N.R. (2015) Forty Years with the Q-system – Lessons and Developments. NB&A, Oslo, Norway

Barton, N.R., Quadros, E. (2015) Anisotropy is everywhere, to see, to measure, and to model. Rock Mech. Rock Eng. 48 (4), 1323e1339

Barton, N.R., Bar, N. (2015) Introducing the Q-Slope Method and its Intended Use within Civil and Mining Engineering Projects. Geomechanics Colloquium, pp. 157e162

Bar N, Barton N (2017) The Q-slope Method for Rock Slope Engineering. International Journal of Rock Mechanics & Rock Engineering, December 2017, Volume 50, Issue 12, Springer-Verlag: 3307-3322

Barton, N.R. (2021) Continuum or discontinuum GSI or JRC. Geotechnical Challenges in Mining, Tunnelling and Underground Structures (ICGCMTU2021) Malaysia. Invited keynote lecture.

Barton N et al. (2023) Advances in joint roughness coefficient (JRC) and its engineering Journal Rock Mechanics Geotechnical Engineering, applications, of and https://doi.org/10.1016/j.jrmge.2023.0

Berisavljević, Z. (2015) Definisanje parametara čvrstoće na smicanje kod izvođenja kosina u ispucalom stenskom masivu, Rudarsko-geološki fakultet, Beograd

Berisavljević, Z., Berisavljević D., Marjanović M. (2021) Stabilnost kosina u stenskoj masi, Rudarsko-geološki fakultet, Beograd.

Bieniawski, Z.T. (1989) Engineering rock mass classifications. John Wiley & Sons, New York, 251 p

Broch, E. and Franklin, J.A. (1972) The Point-Load Strength Test. International Journal of Rock Mechanics and Mining Sciences, 9, 669-697

Brown E.T. (2008) Estimating the mechanical properties of rock masses. In: Potvin Y et al (eds) Proceedings of the 1st Southern Hemisphere international rock mechanics symposium. Australian Centre for Geomechanics, Perth, pp 3–2

Cai M., Kaiser P.K., Uno H., Tasaka Y., Minami M. (2004) Estimation of rock mass deformation modulus of jointed hard rock masses using the GSI system. Int J strength and Rock Mech Min Sci 41:3–19

Deere, D.U. (1963): Technical description of rock cores for engineering purposes. Felsmechanic und Ingenieurgeologie 1: 16-22

Deere, D.U., Miller, R.P. (1966) Engineering classification and index properties of rock. Technical Report No. AFNL-TR-65-116. Albuquerque, NM: Air Force Weapons Laboratory

Dimitrijević, M., Dimitrijević M. (1989) Depozicioni sistemi klastita, Jugoslavenski komitet svjetskih kongresa za naftu; časopis "Nafta" Zagreb; institut za geološka istraživanja, OOUR za geologiju Zagreb, Zagreb

Einstein, H., Steiner, W., Baecher, G.B. (1979) Assessment of empirical design methods for tunnels in rock. RETC 1979, 683–705

Grifth A.A. (1921) The phenomena of rupture and fow in solids. Philos Trans R Soc Lond (ser a) 221:163–198

Grifth A.A. (1924) Theory of rupture. In: Proceedings of the 1st international congress on applied mechanics. Delft, Netherlands, pp 55–63

Grimstad, E., Barton, N. (1993) Updating the Q-System for NMT. Proc. int. symp. on sprayed concrete-modern use of wet mix sprayed concrete for underground support, Fagernes. 46-66. Oslo: Norwegian Concrete Assn

Grimstad, E., Kankes, K., Bhasin, R., Magnussen, A. and Kaynia, A. (2002) Rock Mass Quality Q Used in Designing Reinforced Ribs of Sprayed Concrete and Energy Absorption. Proceedings of International Symposium on Sprayed Concrete, Davos, 22-26 September 2002, 134-142.

Hoek, E., Franklin, J.A. (1968). A simple triaxial cell for field and laboratory testing of rock. Trans. Instn Min. Metall. 77, A22- 26

Hoek E., Brown E.T. (1980a) Underground excavations in rock. Institution of Mining and Metallurgy, London

Hoek E, Brown E.T. (1980b) Empirical strength criterion for rock masses. J Geotech Eng Div, ASCE 106:1013–1035

Hoek E. (1983) Strength of jointed rock masses. Geotech 23:187–223

Hoek E. (1994) Strength of rock and rock masses. ISRM News J 2:4–16

Hoek, E., Kaiser, P.K., Bawden, W.F. (1995) Support of underground excavations in hard rock. Balkema, Rotterdam

Hoek, E., Brown, E.T. (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci, 34(8):1165–1186

Hoek, E. (1998) Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. Int J Rock Mech Min Sci 35:63–68

Hoek, E., Read, J., Karzulovic, A., Chen, Z.Y. (2000) Rock slopes in civil and mining engineering. Published in Proceedings of the International Conference on Geotechnical and Geological Engineering, GeoEng2000, Melbourne

Hoek, E., Carranza-Torres, C., Corkum, B. (2002) Hoek-Brown criterion-2002 edition. In: Proceedings of the NARMS-TAC conference, Toronto, vol 1, 267–273

Hoek E, Diederichs M.S. (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43:203–215

Hoek E. (2012) Blast damage factor D. https://www.rocscience.com/ documents/pdfs/rocnews/winter2012/Blast-Damage-Factor-DHoek.pdf. Accessed 15 Oct 2020

Hoek E., Carter T.G., Diederichs M.S. (2013) Quantification of the Geological Strength Index Chart. In: Proceedings of the 47th US rock mechanics/geomechanics symposium, San Francisco, No. 672

Hoek E., Brown E.T. (2019) The Hoek–Brown failure criterion and GSI–2018 edition.

J Rock Mech Geotech Eng 11:445–463

Hudson, J., Harrison, J. (1997) Engineering rock mechanics: An introduction to the principles. Elsevier Science Ltd. Oxford, 444 p

Marinos, P., Hoek, E. (2000) GSI – A geologically friendly tool for rock mass strength estimation. Proc. GeoEng2000 Conference, Melbourne, 1422-1442

Marinos, P., Hoek, E. (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ, 60:85–92

Marinos, V. (2010) New proposed GSI classification charts for weak or complex rock masses. Bull Geol Soc Greece XLIII, 3:1248–1258

Marinos, V. (2017) A revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flysch. *Bull Eng Geol Environ* **78**, 899–912. <u>https://doi.org/10.1007/s10064-017-1151-z</u>

Mojsilović S. i dr. (1975) Tumač za list Valjevo, Savezni geološki zavod, Beograd

Morgenstern, N.R., Price, V.E. (1965) The analysis of the stability of general slip surfaces. Geotechnique, 15(1):79–93

NGI (2015) Handbook: Using the Q-system. Rock mass classification and support design, Oslo.

Palmstrom A. (1982) The volumetric joint count - A useful and simple measure of the degree of rock mass jointing. IAEG Congress, New Delhi, p V.221 - V.228

Palmstrom A. (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Sp Tech 20:326–377

Rafei Renani H., Martin C.D. (2020) Slope stability analysis using equivalent Mohr-Coulomb and Hoek-Brown criteria. Rock Mech Rock Eng 53:13–21

Renani H., Cai M. (2021) Forty-Year Review of the Hoek–Brown Failure Criterion for Jointed Rock Masses. Rock Mechanics and Rock Engineering (2022) 55:439–461

Stille, H., Palmstrom, A. (2003) Classification as a tool in rock engineering. Tunnel Underground Space Technol, 18:331–345

Tsiambaos, G., Saroglou, H. (2010). Excavatability assessment of rock masses using the Geological Strength Index (GSI). Bull Eng Geol Environ, 69(1):13-274

United States Geological Survey. URL: <u>https://earthexplorer.usgs.gov</u>

Yang, B., Elmo, D. (2022) Why Engineers Should Not Attempt to Quantify GSI. Geosciences. https://doi.org/10.3390/ geosciences12110417

Образац 1

ИЗЈАВА О АУТОРСТВУ ЗАВРШНОГ РАДА

Име и презиме студента Војислав Ђорђевић

Број индекса Г618/22

Изјављујем

- ٠
- да завршни рад у целини ни у деловима није био предложен за стицање друге дипломе на студијским програмима Рударско-геолошког факултета или других високошколских установа;
- да су резултати коректно наведени и •

• резултат сопственог истраживачког рада;

• да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица.

смичуће чврстоће стенске масе

Упоредна анализа Q и GSI класификације за дефинисање параметара

да је завршни рад под насловом

У Београду, <u>4.7.2023.</u>

Потпис студента

Образац 2

И З Ј А В А О ИСТОВЕТНОСТИ ШТАМПАНЕ И ЕЛЕКТРОНСКЕ ВЕРЗИЈЕ ЗАВРШНОГ РАДА

Име (име родитеља) и презиме студента Војислав (Сава) Ђорђевић

Број индекса Г618/22

Студијски програм Геотехника

Наслов рада <u>Упоредна анализа Q и GSI класификације за дефинисање параметара</u>

смичуће чврстоће стенске масе

Ментор Зоран Берисављевић, доц. др

Изјављујем да је штампана верзија мог завршног рада истоветна електронској верзији коју сам предао/ла ради одлагања у Дигиталном репозиторијуму Рударско-геолошког факултета.

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити у електронском каталогу и у публикацијама Рударско-геолошког факултета.

У Београду, <u>4.7.2023</u>.

Потпис студента

Образац 3

ИЗЈАВА О КОРИШЋЕЊУ ЗАВРШНОГ РАДА

Овлашћујем библиотеку Рударско-геолошког факултета да у Дигитални репозиторијум унесе мој завршни рад под насловом:

Упоредна анализа Q и GSI класификације за дефинисање параметара смичуће чврстоће стенске масе

који је моје ауторско дело.

Завршни рад са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Мој завршни рад одложен у Дигиталном репозиторијуму Рударско-геолошког факултета је (заокружити једну од две опције):

- I. редуковано доступан кроз наслов завршног рада и резиме рада са кључним речима;
- II. јавно доступан у отвореном приступу, тако да га могу користити сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се уз сагласност ментора одлучио/ла.
 - 1. Ауторство (СС ВҮ)
 - 2. Ауторство некомерцијално (СС ВУ-NС)
 - 3. Ауторство некомерцијално без прерада (СС ВУ-NC-ND)
 - 4. Ауторство некомерцијално делити под истим условима (СС ВУ-NC-SA)
 - 5. Ауторство без прерада (СС ВУ-ND)
 - 6. Ауторство делити под истим условима (СС ВУ-SA)

(Заокружите само једну од шест понуђених лиценци. Кратак опис лиценци је саставни део ове изјаве.)

У Београду, <u>4.7.2023</u>.

Потпис ментора

Потпис студента

- 1. Ауторство. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.
- 2. **Ауторство некомерцијално**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.
- 3. **Ауторство** некомерцијално без прерада. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу

дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

- 4. Ауторство некомерцијално делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.
- 5. Ауторство без прерада. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.
- 6. **Ауторство** делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама,

односно лиценцама отвореног кода.