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Integrating landslide magnitude in the susceptibility assessment of the City of
Doboj, using machine learning and heuristic approach

Cvjetko Sandić a,b, Miloš Marjanovića, Biljana Abolmasov a and Radislav Tošićc

aFaculty of Mining and Geology, University of Belgrade, Belgrade, Serbia; bGeological Survey of the Republic of Srpska, Zvornik, The
Republic of Srpska, Bosnia and Herzegovina; cFaculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, The
Republic of Srpska, Bosnia and Herzegovina

ABSTRACT

In this work, landslide assessment of the Doboj City area was modeled by combining machine
learning and heuristic tools. The machine learning part was used to map the Morphometric
factor. i.e. probability of landslides based on relation between the magnitude of events and
morphometric parameters: elevation, distance to streams, slope, profile curvature, and
aspect. The Random Forest and Support Vector Machines algorithms were implemented in
the learning protocol, which included several strategies: balancing of the training/testing set
size, algorithm optimization via cross-validation, and cross-scaling. The best performing
Morphometric factor ap was created by learning on 50 m and testing on 25 m dataset. The
heuristic part was used for modeling of Lithological factor and Land Cover factor maps, by
expert-driven scoring of their units, within 0-1 range of values. The final Susceptibility map
was obtained by multiplying all three factor maps resulting in a high-performing model
with AUC=0.97 and acc=92%.
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1. Introduction

Landslide inventorying and Landslide Susceptibility

Assessment (LSA) has become a conventional plan-

ning tool in the past couple of decades, with increasing

scientific and practical interest (Thiery et al., 2020).

The LSA is of particular importance as it develops at

an accelerating rate (Reichenbach et al., 2018). Even

though it is not standardized, the LSA methodology

has been widely accepted based on recommendations

of the leading research groups and other distinguished

publications (Cascini, 2008; Corominas et al., 2014;

Varnes, 1984). Although there is a lack of uniform

understanding of susceptibility and hazard assessment

(Thiery et al., 2020), it is commonly perceived that

susceptibility considers only spatial probability of the

landslide occurrence deducted from terrain’s intrinsic

properties, while hazard also includes temporal prob-

ability and probability of specified intensity of future

events. Hazard assessment thus contains three com-

ponents: susceptibility, frequency and magnitude.

There are several common LSA approaches: heuris-

tic; deterministic; statistic and/or machine learning

(ML). The latter has additionally inspired researchers

in the past few years (Merghadi et al., 2020; Pourgha-

semi et al., 2018) bridging the computational and geos-

cientific field of research. Quantity of research examples

is commonly entailing the increase of quality, but the

impression is that many researchers simply reapply

well-known ML techniques to new case studies, which

opens two considerations: the first one suggesting that

it might be the time for standardizing the ML approach

in LSA; and the second, suggesting that research should

be further directed towards innovative solutions. The

latter is followed in this work. In addition, we used

somewhat unconventional concept of susceptibility

and combined not only the spatial probability based

on the inventoried landslide locations, but also their

additional characteristics. Namely, since we were in

possession of a detailed single-event (2014) landslide

inventory, we decided to utilize additional relations

between landslide features and terrain properties. The

resulting map is not pure susceptibility, nor it is purely

a hazard map, but rather something in between – a sus-

ceptibility map with integrated landslide magnitude.

This paper is not attempting to present yet another

landslide zonation map (Main Map), leaving its appli-

cability or its modeling issues unanswered. Relying on

the authors’ previous work, such as Marjanović

(2013); Krušić et al. (2017); Peshevski et al. (2019);

Marjanović et al. (2019); Đurić et al. (2019), this

paper attempts to address some of the common issues

while providing an insight in a successfully

implemented ML in LSA mapping, with a heuristic

touch, as well as innovative data preprocessing.
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These issues include matching the optimal ML tech-

nique against the case study at hand, working with

limited data, experimenting with different sampling

strategies and working across different resolutions

(cross-scaling), addressing the validation problem

and finally, combining of heuristic and ML

approaches. In the present paper in particular,

we have implemented the following strategies: cross-

scaling, numeric data normalizing, non-landslide

area masking and balancing between non-landslide

and landslide sample size.

Another common issue in LSA is the visual and

cartographic quality of the output maps. They are

commonly generic, with a standard red–green

(traffic light) color scale, while appearance and visi-

bility of details, which are scale-depended, are some-

times neglected. Examples of good practice are given

in Bernat Gazibara et al. (2019), Borrelli et al.

(2018), Segoni et al. (2016), wherein landslide inven-

torying or LSA modeling is supplied with high-quality

cartographic output map in large format.

2. Case study area

The Doboj City belongs to the Republic of Srpska

(Bosnia and Herzegovina). It is located in its central

part and covers an area of about 655 km2 (Figure 1).

In accordance with the latest Census 2013, it consists

of 83 settlements with a population of 77,224 in total.

The landscape is dominated by the wide valley of

the Bosnia River, which stretches meridianally, predis-

posed by N–S trending faults, but curving around the

city itself, due to transection of N–S trending faults by

E–W trending ones. Surrounding the valley, hilly to

mountainous areas (up to 915 m a.s.l.) are ascending

toward the E and SE. Drainage pattern is relatively

dense, with many tributaries also predisposed by

regional structural features. Lithological constituents

are primarily split into two belts, Paleogene flysch to

the north and ophiolitic mélange to the south, while

various Cretaceous deposits and Neogene basins are

squeezed between them. Subdued, there are limited

intrusions of acidic volcanic rock, patches of Triassic

massive limestones and Paleozoic schists. Landslides

are typically hosted in the ophiolitic mélange and

Paleocene-Eocene clastites and flysch, as well as in

the cretaceous weathered limestone and marl in the

central part (Sandić et al., 2017).

3. Sources and inputs

The choice of input data may vary considerably

depending on availability, but more importantly dis-

tribution of their values and classes. In this case

study, some important nominal conditioning factors,

such as Lithologic units and Land Cover were inap-

plicable for ML protocol due to inadequate

distribution. In particular, landslides were too densely

concentrated in very few Lithologic and land cover

units, while being completely absent in most of others.

For this reason, the input data set for ML protocol

included only numeric conditioning factors of mor-

phometric type (Table 1).

The above-listed conditioning factors are among

the most common proxies in LSA and no further

details are in this work dedicated to elaborate reasons

and GIS techniques needed for including them in the

analysis. It is sufficient to note that all of them were of

numerical type, and all are introduced as 25 m raster

files. On the other hand, nominal conditioning factors

were quantified heuristically, by assigning expert-

defined score to their units on 0–1 scale, according

to their influence on landsliding (Table 2). The scores

were based on experience of local geological engineers

working on the landslide inventorying in wider areas

around the Doboj City, and the logic is consistent

(Table 2) with the common practice (weathered, tecto-

nized, clay-rich and younger rock formations are more

prone to landsliding, as well as arable land and poorly

vegetated areas). Two output maps were produced, i.e.

Lithological factor and Land Cover factor map, with

0–1 scale of values, and 25 m resolution (Figure 2).

Landslide inventory compiled for the specified area

was a result of a detailed field campaign conducted in

2016–2018 targeted at registering effects of massive

landsliding in 2014. At each reported landslide, inven-

tory form was filled, containing information on

location, date of acquisition, date of activation, land-

slide type and material, water content, landslide vel-

ocity, activity and trend, triggering mechanism, as

well as metric descriptors (slope angle, length, width,

estimated depth, scarp height, landslide shape) and

damage assessment (land use class, affected objects,

inflicted damage level, recommendations). Each land-

slide was outlined as a polygonal feature in GIS

environment. The metric information (dimensions;

velocity, which was scored into 7°) (Hungr et al.,

2014; IUGS-International Working Group, 1995);

and activity, which was scored into 6 different degrees

according to Varnes classification (Hungr et al., 2014)

were used for defining the magnitude of landslides.

The magnitude was appended to each of the 79 land-

slide polygons and normalized to relative 0–1 scale by

multiplication of three main proxies (Volume × Vel-

ocity × Activity). Quantification of magnitude enabled

regression ML task as will be explained later.

Predominant landslide type (76 landslides) was

shallow translational earth slide, while there were

two landslides of debris flow type, and one of earth

flow type, which were excluded from further analyses

due to drastically different mechanisms, possibly unre-

lated to considered conditioning factors (Dikau, 1996;

Hungr et al., 2014). Landslides velocities were esti-

mated to range between slow or m/year (85%), to
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moderate or m/month (15%). Most of the landslides

were dormant (52%), while there were also examples

of the first-time activated (28%), conditionally stable

(15%) and suspended slides (5%). All slides were pri-

marily triggered by excessive rainfall (in 2014) and

inflicted damage to housing objects and local roads,

subordinately agriculture and infrastructure. Average

landslide size was around 5000 m2 (70 × 70 m) with

relatively shallow depths (2.5 m on average).

4. Mapping methodology

The LSA mapping approach in the present work is

somewhat specific. It considers a combination of

three different factors: Morphometric, Lithologic and

Land Cover. The final Susceptibility map is obtained

by their simple combination, i.e. multiplication

(Figure 3). The latter two were routinely derived by

using heuristic scoring, as described before, while

the first one, the Morphometric factor, was derived

by using two well-known ML techniques: Support

Vector Machines (SVM) and Random Forest (RF).

Detailed overview of LSA applications of these two

Figure 1. The wider study area location (left) and extent with the altitude information and landslide inventory outlined in black
(right).

Table 2. Quantification of nominal conditioning factors (reference to Figure 2).

Land Cover map (CORINE level 2) Lithologic map

No. Unit Score No. Unit Score

1 Inland waters 0.10 1 Alluvial soil & terrace soil (Quaternary) 0.00
2 Forests 0.20 2 Gabbro – Peridotite (Jurassic) 0.10
3 Permanent crops 0.35 3 Amphibolite & phyllite schist (Paleozoic) 0.20
4 Shrub – herbaceous vegetation associations 0.40 4 Serpentinite (Jurassic) 0.20
5 Pastures 0.45 5 Limestone (Triassic) 0.20
6 Heterogeneous agricultural areas 0.50 6 Dacite (Miocene) 0.30
7 Arable land 0.60 7 Diabase (Jurassic) 0.30
8 Urban fabric 0.80 8 Limestone (Cretaceous) 0.35
Rationale for scoring Land Cover units: arable or poorly vegetated land is
likely to host shallow landslides in contrast to forested and vegetated
areas with considerable root cohesion; urban areas are prone due to
engineering interventions and excesses on pipelines.
Rationale for scoring Lithological units: solid rocks of magmatic or
metamorphic origin, massive carbonates, cohesionless soil on flat areas
are unlikely to host landslides; tectonized ophiolite, weathered flysch
and poorly cemented deposits are likely to host landslides.

9 Scree (Quaternary) 0.45
10 Limestone (Paleocene) 0.50
11 Coal (Pliocene) 0.55
12 Clayey sand and gravel (Pliocene) 0.60
13 Limestone (Miocene) 0.65
14 Clastite and marl (Miocene) 0.70
15 Deluvial soil (Quaternary) 0.75
16 Flysch (Eocene) 0.85
17 Ophiolitic mélange (Jurassic) 0.90
18 Marlstone and breccia (Cretaceous) 1.00

Table 1. Input data for ML protocol – morphometric and
derived conditioning factors.

Conditioning factor Source Resolution [m]

Elevation Digital Terrain Model (DTM) 25
Slope GIS-derived from DTM 25
Profile curvature GIS-derived from DTM 25
Aspect GIS-derived from DTM 25
Distance from rivers GIS-derived from DTM 25
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Figure 2. Lithologic map (a) and Land Cover map (b) with respective factor maps after heuristic scoring in 0–1 range: Lithologic
factor (c) and Land Cover factor (d).
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techniques is beyond the scope of this work, but it is

sufficient to note that they are increasingly popular

lately (e.g. more than 300 hits on www.sciencedirect.

com for the SVM in LSA with linear rising trend

from 2016 to 2022; and about 600 papers on RF in

LSA, with exponential rising trend from 2016 to

2022). For detailed overviews, the reader is directed

to Pourghasemi et al. (2018), Merghadi et al. (2020)

and Shano et al. (2020).

4.1. SVM algorithm

The SVM is a linear regression tool which separates

linearly non-separable examples (e.g. landslide and

non-landslide instances) in high-dimensional (hyper-

)space of coordinates (i.e. conditioning factors). The

kernel functions are used to transform the regular

coordinate space, where the classes at hand are non-

separable, into a hyper-dimensional space where

these classes become separable. To do so, the algor-

ithm needs to optimize the linear regression line

(Ax + B), by maximizing the misclassification margin

size. The boundary instances contained by the largest

margin are called Support Vectors, and the Ax + B

regression line that sits in the middle of the margin

becomes the separation rule. Once determined, the

rule can be transformed back into the original space

as a complex function (Ax + B→ f ). As ML protocol

involves separate, non-overlapping, training, testing

and validating sets of instances, the rule f, learned

over the training set is thus applied to the ‘unseen’

testing and validating instances. Validation set is

used for fine-tuning of the algorithm parameters or

for modeling performance evaluation. For a more for-

mulated explanation of the SVM implementation in

LSA the reader is directed to Marjanović, Kovačević,

Bajat, and Voženílek (2011). The SVM algorithm is

used for regression and classification tasks in ML con-

text. Both are applicable in LSA, with commonly high

accuracy, expressed through Random Operating

Characteristics Area Under Curve (ROC AUC)

(Merghadi et al., 2020). Since based on Support

Vectors, it commonly needs fewer data instances to

establish accurate models than other ML techniques.

4.2. RF algorithm

The RF is actually an ensemble learning algorithm

which is comprised of a number of Random Tree

(RT) algorithms. RT is an algorithm which resembles

an upside-down tree, starting with a root node,

branching into further nodes and ending with the

leaves (end-nodes). Each node is populated by a coor-

dinate (i.e. conditioning factor) which is randomly

selected (using a subset of all available conditioning

factors without repetition), then parsed into a subset

of values, and forwarded to the next node. Parsing is

performed by introducing if/else conditions (with

appropriate algebraic or logical query in respect to

the values of the chosen conditioning factor) and

replicated down the tree structure until the leaves

are encountered where no further parsing is possible.

By aggregating all if/else conditions from the root to

leaf, a set of rules that separates parsed instances is

generated (e.g. landslide vs. non-landslide). Some con-

ditions can be redundant, and the set can be simplified

Figure 3. Modeling procedure (elements are color-coded as follows: dark blue – input data, light blue – GIS modeling orange –
spreadsheet data processing, green – calibration, gray – machine learning protocol; software logos are placed next to related
elements; specific steps are indicated in brackets).

JOURNAL OF MAPS 5



(pruning of the tree) for optimal performance. One

can imagine a number of such RTs put together,

which compose a larger collection called Random For-

est. The RF algorithm only controls the number of

individual RTs involved, as well as the subset size

(number of conditioning factors included, but com-

monly log 2n + 1, where n is the total number of con-

ditioning factors). The classification or regression rule

f is thus defined as a set of aggregated if/else conditions

learned over the training samples. Validation and test-

ing are accordingly performed over the ‘unseen’

samples. The reader is directed to Marjanović et al.

(2018) and Marjanović, Kovačević, Bajat, Mihalić,

et al. (2011) for more elaborate DT formulation in

LSA context.

4.3. Modeling protocol

The ML technique is implemented in a regression task

(numeric dependent variable, i.e. landslide magnitude).

A very specific environment that is characterized by a

clustered, unevenly distributed landslide inventory is

indicative for applyingML techniques, wherein training

on limited or scarce samples are not necessarily an

obstacle in the modeling process. It is however limiting

in respect to the input data, as some types of condition-

ing factors which are common in LSA were not evenly

distributed throughout the area, especially nominal

data types, such as Lithologic or Land Cover maps.

Therefore, the latter two were introduced as entirely

separate factors, after the ML protocol was completed

and produced a complex Morphometric factor.

Given the average landslide size of 5000 m2, the

100 × 100 m pixel resolution (10,000 m2) was not

representative (too coarse). Therefore, two resolution

variants were considered for input data: 50 × 50 m

and 25 × 25 m (the original resolution). The entire

ML dataset (both landslide inventory and all numeric

conditioning factors) was first cloned into two var-

iants: 25 m resolution and 50 m resolution. Namely,

the cross-scaling concept (Đurić et al., 2019) implies

training at coarser resolution and validating against

higher resolution data. Thereby, the algorithms are

not biased by intricate details and too detailed

relations that can occur in finer resolution case. The

‘25 m’ dataset was the original one, as all input data

are supplied with that resolution. The ‘50 m’ dataset

was generated by resampling all ML inputs, i.e. all

numeric conditioning factors, from 25 to 50 m raster

cell size. The resampling method was the Nearest

Neighbor, which is known for smoothing effects in

raster processing.

The ML procedure (Figure 3) can be described by

the following steps:

− Step 1: All inventory landslides are appended with

the magnitude value.

− Step 2: 25% of landslide polygons from the inven-

tory are chosen for validation and 75% for train-

ing (Figure 4(a)).

− Step 3: Landslide polygons are first converted into

raster grids (25 and 50 m resolution), sub-

sequently converted to instance points (with cor-

responding resolution).

− Step 4: To counterbalance the landslide instances, an

equal number of non-landslide instances, with

magnitude of zero, were generated randomly out-

side the landslide polygons, by using a mask for

areas very unlikely to host any landslides, i.e.

flatland (<5°), ridge lines and solid rock areas

(Figure 4(a)) and appended to landslide instances

generated at Step 3.

− Step 5: Calibration was performed within the train-

ing set using standard 10-fold cross-validation

technique where several combinations for SVM

and RF parameters were prompted by trial-and-

error tests. The optimal parameters with best-per-

forming metrics were adopted for all further mod-

eling variants.

− Step 6: Using the calibrated parameters, both SVM

and RF regression algorithms were trained as

follows:
. Training on ‘25 m’ and testing on ‘25 m’ dataset.
. Training on ‘50 m’ and testing on ‘25 m’ dataset

resulting in a series of intermediate models.

− Step 7: Visualizing the resulting maps in GIS

environment as rasters, for both visual and para-

metric evaluation of Morphometric factor (ML)

models.

− Step 8: Heuristic scoring of Lithological units, using

local expert experience and landslide inventory as

a reference.

− Step 9: Heuristic scoring of Land Cover units, using

local expert experience and landslide inventory as

a reference.

− Step 10: Multiplying the best-performing morpho-

metric factor model of Step 6 with a heuristically

derived factors (Lithologic and Land Cover).

5. Results and discussion

Since the most complex task was derivation of Mor-

phometric factor based on ML-based regression, the

following parameters were calibrated in a trial-and-

error procedure over the training dataset for respect-

ive ML algorithms:

− SVM included combinations of the following

parameters:
. ε regression tolerance or a margin within which

most of the instances should fall. Larger values

are decreasing the accuracy of the regression,

whereas smaller values are decreasing its gener-

alization power. Small tolerance equaling 0.001

6 C. SANDIĆ ET AL.



is herein kept constant, as generalization is con-

sidered via factor C and cross-scaling step.
. C is the trade-off penalty for instances outside

the regression tolerance. Higher values of C

lead to potential overfit. Values 2, 10, 100 were

considered.
. γ is the Radial Basis Function kernel exponent

which corresponds to higher dimension of the

hyperspace, meaning that lower values are

desired in terms of computational cost, but

higher values are desired in terms of successful

regression. The values 0.1 and 1 were considered.

− RF included only one combination of parameters:
. s is the number of trees in the forest, which can

be computationally demanding if unreasonably

increased. Herein, 100 trees were considered.
. K (K = log 2n + 1) is the number of conditioning

factors (n in total) randomly selected among the

five available conditioning factors without rep-

etition. It is calculated by default and equals 2.

All parameter combinations were repeated for both

training protocols (25 m on 25 m, and 50 m on 25 m),

totaling 12 SVM and 2 RF models. Their performance

was assessed by Root Mean Square Error (RMSE) as

well as Area Under Curve (AUC) metrics (Table 3).

It is apparent that cross-scaling had positive effect

on the performance for all model variants, up to

several percent (8–10%). In respect to SVM, it is

apparent that lower dimensionality and penalty factor

result in more accurate models. The best-performing

model according to the RMSE is RF_s100_K2_50vs25

(Random Forest model using 100 trees fed by two ran-

dom conditioning factors, trained on 50 m dataset and

extrapolated over 25 m dataset), while the model-

labeled SVM_C2_g0.1_50vs25 (SVM model using

penalty factor 2, kernel factor 0.1, tolerance of 0.001,

trained on 50 m dataset and extrapolated over 25 m

dataset) was the best in respect of AUC. Given that

in LSA the AUC parameter is more commonly used

than RMSE, and that RMSE is more appropriate for

the goodness of the fit than assessing false positives

Figure 4. Training and cross-validation landslides with indicated non-landslide area (a); Training dataset including subsamples of
the landslide and non-landslide instances colored and sized in respect to landslide magnitude (b).

Table 3. Performance of the models against the validation
dataset (Figure 4(a)).

Model label RMSE AUC

SVM_C2_g0.1_25vs25 0.098 0.910
SVM_C2_g1_25vs25 0.099 0.900
SVM_C10_g0.1_25vs25 0.095 0.870
SVM_C10_g1_25vs25 0.098 0.880
SVM_C100_g0.1_25vs25 0.102 0.880
SVM_C100_g1_25vs25 0.101 0.850
SVM_C2_g0.1_50vs25 0.099 0.970
SVM_C2_g1_50vs25 0.099 0.920
SVM_C10_g0.1_50vs25 0.100 0.910
SVM_C10_g1_50vs25 0.101 0.900
SVM_C100_g0.1_50vs25 0.097 0.890
SVM_C100_g1_50vs25 0.098 0.870
RF_s100_K2_25vs25 0.068 0.910
RF_s100_K2_50vs25 0.051 0.940
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and negatives which are more important in LSA, slight

leverage is given to the AUC results, and therefore,

SVM_C2_g0.1_50vs25 was selected as the model of

choice. It is important to highlight that all these

models involved only morphometric and derived par-

ameters as proxies of the landsliding process.

The ML model of choice was labeled as Morpho-

metric factor (Mf), which highlighted areas prone

to landslides regardless of their Lithologic compo-

sition and Land Cover conditions. The final model

was therefore, supplied with these two respective fac-

tors – Lithological factor (Lf) and Land Cover factor

(LCf). All three factors were normalized to 0–1 scale

of values, entailing that relative relationships apply

(not absolute magnitudes). A simple multiplication

of all three factors (Mf × Lf × LCf) resulted in the

final landslide susceptibility model (Figure 3), labeled

SVM_C2_g0.1_50vs25_LithoLand, and the accord-

ing map is presented in the attachment in the main

frame of the layout (also in Figure 5). The Mf

model labeled SVM_C2_g0.1_25vs25 (for compari-

son with its cross-scaled counterpart), the Mf

model of choice labeled SVM_C2_g0.1_50vs25 (for

comparison of the influence of Lithologic and Land

Cover factors) and the final Susceptibility model,

labeled SVM_C2_g0.1_50vs25_LithoLand are given

in Figure 5 for comparison. Natural breaks technique

was used to separate the respective landslide suscep-

tibility classes in all models, from Very Low (green)

to Very High (red). It is visually apparent that the

final Mf model was more successful in following gen-

eral morphology of valleys, hollows, gullies (accord-

ing to the morphometric inputs it was trained on),

unlike RF variants for instance (pixilation, discon-

tinuation of slopes). The Mf model of choice seems

to overestimate the Moderate and High susceptibility

class. Given that the Mf models are based on mor-

phometric inputs only, the heuristic intervention

which includes non-morphometric influences was

needed to produce more realistic final Susceptibility

model. Even though the AUC performance did not

increase (it remained 0.97 as in the case of Mf) it is

visually apparent that geological and environmental

features are better exampled on this map (Main

Map). One of the reasons for the same AUC perform-

ance perhaps lies in the fact that the landslide inven-

tory available for the validation was relatively small

and localized. The validation of the final Suscepti-

bility model SVM_C2_g0.1_50vs25_LithoLand was

performed by considering only its VH Susceptibility

class (VH class = 1, everything else = 0) against the

rasterized landslide inventory (landslide = 1, every-

thing else = 0). The contingency table (Table 4),

shows very high accuracy (acc = 92%), but again, it

is probably the effect of a small sample available for

validation. The overestimation of the VH and H

class is apparent.

Distribution of susceptibility classes is relatively

evenly spread (Main Map). Very Low susceptibility

(indicating that there is low likelihood of landslide

of any kind to appear) occupies most of the area, i.e.

33%, primarily limited to flat plains along river valleys.

Very similar distribution is present in Low, Moderate

and High susceptibility, occupying 20%, 22% and 19%,

respectively. These classes occupy gentle to steep

slopes in various Lithologic and Land Cover domains,

but in respect to potential landslide occurrence can be

interpreted very differently. For instance, moderate

class can include several medium-sized and moder-

ately fast landslides reoccurring with medium likeli-

hood within outlined zone, but also, a few large but

very slow landslides, or many very small but rapid

Figure 5. Comparison of the best-performing Morphometric factor model Mf (a) and its non-cross-scaled variant (b), and the final
landslide Susceptibility model (Main Map) SVM_C2_g0.1_50vs25_LithoLand (c); landslides are outlined in black for all three
models.
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ones. Of smallest extent is expectedly, the Very High

susceptibility class (wherein a few large or many

small landslides of moderate to high velocity, with cur-

rently active or reactivated stage can occur), occupying

only 6% of the total area. Inconveniently, this zone is

located in vicinity of principal urban areas and infra-

structural corridors. Unlike in other ML models,

where ‘salt and pepper’ pixilation of resulting maps

is present, Very High susceptibility class in the final

model (SVM_C2_g0.1_50vs25_LithoLand) is logically

distributed along the valley sides on steeper slopes and

across Lithologic units that are known for hosting

High and Very High susceptibility class, primarily

flysch (Unit 16) and ophiolitic mélange (Unit 17)

(Figure 6(a)), whereas forest (Unit 2) and agricultural

areas (Unit 6) host most of the High and Very High

susceptibility class.

6. Conclusion

This work presents the reader with a know-how for

implementing ML regression task in LSA, with all rel-

evant steps in respect of the preparation of data,

sampling strategy (balanced number of landslide and

non-landslide training data, cross-scaling, etc.). The

proposed approach was based on combining Morpho-

metric, Lithologic and Land Cover factors as landslide

susceptibility proxies. The Morphometric factor was

calculated using ML, wherein the landslide magnitude

range (extracted from the available inventory) was uti-

lized to enable the ML regression task. Lithologic and

Land Cover factors were obtained heuristically, by

expert-driven scoring. The principal finding of this

work is that heuristically defined factors successfully

redeem shortcomings of the ML regression. On one

hand, the absence of landslides over the entire area

implies the use of ML, but on the other hand, the

learning is limited to numerical conditioning factors

which have full areal coverage. Neither of them

could stand alone in this case study, but their combi-

nation was highly appropriate. Another important

finding is that cross-scaling has been proven useful

in all ML models and seemed to influence perform-

ance more than SVM or RF parameter optimization.

The generalization is thus, a desirable effect, even

though the improvements are slight in terms of per-

formance metrics (8–10%), but considerable in terms

of spatial distribution of susceptible zones (logical

shape of susceptibility zones in respect to slope units

and landslide inventory).

The area of the Doboj City can be considered as

prone to landslides, with significant portion of the

area zoned as Very Highly susceptible (6%) and

Highly susceptible (19%). The fact that urban and

infrastructural area is affected is in favor of such con-

sideration. The unaffected areas, having Low to Very

Low susceptibility are located in the lowland, flat

plains and gentle slopes along the river valleys,

which, on the other hand, might not be immune to

other types of hazard, such as floods and torrents.

Software

GIS processing was performed in ArcGIS 10, includ-

ing input data preparation, heuristic scoring, multipli-

cation of all three factor raster models, and

visualization of the outputs. Training, validation and

testing set were subsampled using the Excel spread-

sheet, once the landslide and non-landslide data

were exported from GIS environment in a table for-

mat. All ML-related steps were performed in Weka

3.9. Conventional desktop computer (16 GB RAM,

8-core at 2.6 GHz under 64-bit operating system)

was sufficient to host all indicated processing and

modeling, within a reasonable time. Final map was

constructed in Corel Draw X7.

Table 4. Contingency table of Very High susceptibility class of
the final model (SVM_C2_g0.1_50vs25_LithoLand) against the
available landslide inventory (number of matching pixels).

Inventory 0 (non-
landslides)

Inventory 1
(landslide)

Model 0 (non-VH
class)

TN = 963941 FN = 353

Model 1 (VH class) FP = 82758 TP = 316
False positive rate (FP/(FP + TN)) = 7.9%
False negative rate (FN/(FN + TP)) = 52.7%
Sensitivity (TP/(TP + FN)) = 47.2%
Specificity (TN/(TN + FP)) = 92.1%
Accuracy = 92.0%

Figure 6. Distribution of susceptibility classes against Lithologic units (a), and Land cover classes (b) (refer to Table 2 for class
legend).
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