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ARTICLEINFO ABSTRACT 

Handling editor: Danielle Schreve The Central Balkans are a key biogeographical region in Southern Europe, influenced by a central European- 
Mediterranean climate, which acted as a refugium for flora and fauna, and favored the dispersion of Neander- 

'Keywords: thals and migration of modern human populations during Late Glacial Period. This study presents pollen analyses 

Palynology · of sediment and hyaena coprolites from Pešturina Cave in Serbia to reconstruct the vegetation landscapes faced 
;IIO{“:) neanderthalensis by Balkan Neanderthals and early Anatomically Modern Humans between MIS 5e-3. Between MIS 5e-5c 

leistocene 
Mid-upper Palaeolithic (archaeological layers 4c and 4b) and MIS 5b-5a (layer 4a), semi-forested environments prevailed, character- 

Central balkans ized by Pinus, deciduous Quercus, Tilia and other angiosperm woody taxa, accompanied by heliophytes such as 

Serbia Artemisia and Poaceae. During MIS 4-3 (layers 3-2), the vegetation was dominated by Artemisia-Poaceae steppes 

with Quercus patches, conifers and legumes. Overall across the sequence, pollen assemblages are highly diverse 

and include a number of deciduous trees and sclerophylls. In addition, the occurrence of several herbaceous taxa 

reinforces the view that the Balkans were outstanding for endemicity. Neanderthals and early Upper Palaeolithic 

hominins lived in a highly diverse refugium, offering multiple opportunities for survival during the warm in- 

terstadials and, more critically, the cold stadials of the Pleistocene. 

1. Introduction Carpatho-Balkan belt to the east and the Dinaric Alps to the west. 

Additionally, the climatic conditions of the Balkans are defined by their 

The Balkan Peninsula displays a great variety and complexity of 

environments from a climatic, geological and vegetational perspective 

(Reed et al., 2004; Hewitt, 2011; Nieto Feliner, 2014; Španiel and 

Resetnik, 2022). Solid geology is considered one of the most deter- 

mining factors in defining the diversity and the refuge of autochthonous 

species of the present-day flora in the Balkans (Polunin, 1980; Thomp- 

son, 2005), at least since the Miocene, with the formation of the 

geomorphology, their particular geographical position and the broad 

platform coastline (Furlan, 1077; Martyn, 1992; Reed et al., 2004). 

Thus, in a series of works of crucial importance for European palae- 

oecology, several authors (Bennett et al., 1901; Tzedakis, 1994, 1999; 

Willis, 1994; Okuda et al., 2001; Magri, 2010; Pross et al., 2015; Sadori 

et al., 2016; Magri et al., 2017; Lang et al., 2023) have shown that the 

Balkan Peninsula acted as a unique phytodiversity reservoir for the 
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Mediterranean Basin. 

The Central Balkans served as a major natural corridor for the 

earliest migrations of archaic and modern humans into Europe (Conard 

and Bolus, 2003; Mihailović, 2009, 2020; Roksandic et al., 2018; Mar- 

in-Arroyo et al., 2023). Therefore, the Central Balkan Range is rich in 

Middle and Late Pleistocene archaeological sites (Mihailovic et al., 

2011, 2022a, 2022b; Roksandic et al., 2011, 2022; Marin-Arroyo, 2014; 
Mihailović and Bogićević, 2016; Skinner et al., 2016; Morin and Soulier, 

2017; Marin-Arroyo and Mihailović, 2017). Pollen analysis has proven 

to be a valuable method to reconstruct the plant components of past 

ecosystems (Ritchie, 1995; Bennett and Willis, 2001; Birks, 2005), 

including: hominin „evolutionary  „contexts (Garcia-Anton and 

Sđinz-Ollero, 1991; Carridn, 1992a, 1992b; Burjachs, 2001; Bonnefille 
et al., 2004; Finlayson and Carrićn, 2007; Bonnefille, 2010; Carridn 
et al., 2011, 2019a, 2019b, 2019c; Messager et al., 2011; Bigga et al., 
2015; McGee and deMenocal, 2017; Ochando et al., 2022a, 2020b; 

Saarinen et al., 2022). Nevertheless, there is still a lack of pollen records 

from that Pleistocene period, also due to the difficulties of conducting, 

pollen analysis in caves, rockshelters and open-air sites. These include 

sedimentary discontinuities, selective preservation, preferential trans- 

port, and contamination by percolating water and bioturbation (Carrion 

and Scott, 1999; Carrion et al., 2009, 2022a). 

Within materials recovered from archaeological contexts, coprolites 

and other foodstuffs have played a crucial role in the history of Qua- 

ternary palynology (Scott, 1994; Carrion et al., 1995a, 1995b, 1999a, 

2006, 2007, 2022a,; Latorre et al., 2002; YIl et al., 2006; Marais et al., 
2015; De Porras et al., 2017; Ochando et al., 2022c), particularly hyaena 

coprolites. (Scott, 1987; Horwitz  and · Goldberg, 1989; 

Gonzalez-Sampćriz et al., 2003; Carrićn et al., 2004, 2008, 2018; Gatta 
et al., 2016; Daura et al., 2017; Djamali et al., 2020; Ochando et al., 

2020a). They often complement the palaeobotanical record as they 
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incorporate strictly entomophilous pollen types that can rarely be found 

in biogenic sediments whose pollen spectra are largely derived from 

airborne pollen and aquatic transport (Carrion, 2002; Carrion et al., 

2018, 2019a, 2019b, 2019c). 
This paper presents a palynological study performed on sediment 

samples and on hyaena coprolites from Pešturina Cave (Niš, southern 

Serbia), with the aim of reconstructing the vegetation landscapes 

occupied by Balkan Neanderthals and early Anatomically  Modern 

Human populations during MIS 5e-3. 

2. The site: physical setting, excavations and chronology 

Pešturina Cave is located about 20 km from the city of Niš (Serbia) 

(43%17'42" N, 22"02'48" E), a small tributary to the Nišava River, on the 

eastern edge of the Niš Basin (near the Sićevo Gorge) and on the western 

slopes of Suva Planina Mountain (Fig. 1). The mountain is situated in the 

south-east of Serbia and extends in a NW-SE direction. It is 45 km long, 

15 km wide, and ranges between 250 m and 1810 m in altitude. The 

karst cave is set in the Upper Jurassic dolomites and reef limestones, 

with Paleozoic siliciclastic sediments below, and Neogene lacustrine 

sediments above the Jurassic sequence, about 330 m above sea level 

(Fig. 1). Pešturina Cave has a totallength of 22 m, with an entrance 15 m 

wide and 3.5 m high (Figs. 1 and 2). 

The Niš Basin is bordered to the north by the slopes of the Svrljig 

Mountains, and to the south by the slopes of the Suva Planina Mountain 

(Anđelković, 1982; Rakić and Dimitrijević, 1973; Vujisić and Navala, 

1980). The Basin preserves multiple recorded caves on its vicinity and 

diverse Pleistocene emplacements, which could have served as human 

habitats in the past. The main communication routes linking the 

southern part of the Balkan Peninsula with Pomoravlje and the Carpa- 

thian Basin cross this area (Radović et al.., 2019) (Fig. 1). Even more, the 
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Fig. 1. Pešturina Cave. a) Location in the western Central Balkans (Niš, southern Serbia), b) cave entrance, c) area of access to the cave.
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Fig. 2. a) Stratigraphy and profiles sampled for pollen analysis in Pešturina Cave, b) stratigraphy with the position of pollen sediment samples, assemblages of 

coprolites, and geochronological data (further details can be found in Tables 1 and 2). 

position of the cave is located along a major cultural and biological 

migration route from Asia into northern Europe during the Middle-Late 

Pleistocene (Roksandic et al., 2011; Mihailović, 2020). 

The cave was discovered in 2006. The initial excavations of a 2.5 x 

1.5 m test pit by 1.3 m deep yielded only a dozen Palaeolithic artifacts. 

However in 2010, when the test pit was expanded after systematic ex- 

cavations, Pešturina  proved to have important deposits mainly 

Table 1 

belonging to the Middle and Upper Palaeolithic (Mihailovic et al., 

2022a). Since 2006, the excavated area has reached a surface ofc. 24 mž 

and a depth ofc. 3 m (Mihailović and Milosević, 2012; Mihailović, 2014; 

Mihailović et al., 2022a) (Fig. 2). 

The multidisciplinary analysis of Pešturina Cave, which includes 

dating, Neanderthal and Anatomically Modern Humans feossils, lithic 

artifacts, and faunal remains, allowed to identify a stratigraphic 

Geochronological data for Pešturina Cave. Further details of the!“C, ESR and OSL ages can be found in Alex and Boaretto (2014), Blackwell et al. (2014, 2018), Alex 

et al. (2019) and Mihailović et al. (2022a). 

Layer - Square Laboratory Sample Technoculture 1 Ckyr - CUltrafiltration (ka cal BP | ESRages(ka+1ocand2o) - OSLages( MIS 
code type BP 95.4% C.L) (Alex and (Blackwell et al., 2014, Mihailović 

Boaretto, 2014; Alex et al., WIEEYAKı: et al., 2022a) 
2019) 2018; Mihailović et al., 

2022a) 

2 L9b RTD-7148 Bone Gravettian 13.4 + 16.3-15.9 MIS2 

60 

2 M9b RTK-6446 Bone Gravettian 26.1 + 31.2-28.9 MIS3 

620 

2 NIlc RTK-6445 Bone Gravettian >37.8 MIS3 

3 M7b RTD-7231B Bone Charentian-like 28.7 + 33.4-32.0 MIS3 

Mousterian 180 

3/4 N1Ob RTK-6450 Bone Charentian-like 36.2 + 46.3-36.3 MIS 

Mousterian 2200 3 

3 N9b RTD-7149 Bone Charentian-like 405% 45.1-43.0 MIS3 

Mousterian 590 

3 LOc AT23 Tooth Charentian-like 38.9 + 2.5 MIS3 

Mousterian 

4a MI1 OSL4 Sediment Charentian-like 69.4 + 6.3 MIS4 

Mousterian 

4a M10d, AT22, ET5, 5 Teeth, Charentian-like 93.1 + 1.4 MIS5 
N9a,N9d, | AT32,AT66, mean Mousterian 
O10c AT65 

4b 14d AT24 Tooth Charentian-like 110.5 + 11.1 MIS5 

Mousterian 

4c O10b, AT47, AT63 2 Teeth, Mousterian 107.4 + 2.8 MIS5 

M10a mean 
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sequence that includes the Late Pleistocene and Holocene (Mihailović 

and Milošević, 2012; Mihailović, 2014; Radović et al., 2019; Lindal 

et al., 2020; Milošević, 2020; Mihailović et al., 2022a). Five strati- 

graphic layers have been identified. A simplified stratigraphic section is 

presented in Fig.. 2b: Layer 1 (L1), the uppermost layer: loose humic silts 

with Bronze Age material (30–50 cm); Layer 2 (L2): light brown 

fine-grained silt, with Gravettian industry (30–70 cm); Layer 3 (L3): 

compact brown fine-grained silt with a Charentian-like Mousterian 

assemblage (30–70 cm). Layer 4 can be divided into three sub-layers of 

unequal thickness: (4a), slight red sediment with large blocks of bedrock 

(10–30 cm); (4b), loose dark red sediment with abundant limestone 

clasts (40–120 cm); (4c), loose dark brown sediment with large rock 

fragments (50–100 cm). The loose dark red sediment of horizon 4b 

contained the majority of human activities evidence (Radović et al., 

2019). Layer 5 (L5): greyish sandy sediment with scarce finds, on tufa 

deposits that probably lie directly above the rocky bottom (20–30 cm) 

(Mihailović and Milošević, 2012; Mihailović, 2014; Radović et al., 2019; 

Lindal et al., 2020; Mihailović et al., 2022a). 

Several methods were used in dating the archaeological materials 

and cave sediment (Table 1). Based on AMS Ultrafiltered on worked 

bones from Layer 2 (Table 2) there is evidence for modern human oc- 

cupations at least between 16.3 and 15.9 ka cal BP, and between 31.2 

and 28.9 ka cal BP (Alex and Boaretto, 2014). In addition, one AMS date 

from Layer 2 (Table 1), RTK-6445 > 37.8 Mc ka BP, along with a date 

from Layer 3 between 33.4 and 32.0 ka cal BP, fits chronologically into 

the earliest Gravettian (Alex et al.. 2019). Thus, it is most likely that 

around 30 ka cal BP (end of the MIS 3), Pešturina was occupied by 

modern humans producing Gravettian or Early Epigravettian industries, 

based on lithics assemblages and these dates (Alex and Boaretto, 2014; 

Alex et al., 2019). 

Bones from Layer 3 with human modifications were dated to 45.1- 

43.0 ka cal BP by radiocarbon dating, likely indicating that the cave 

was used by late Middle Palaeolithic Neanderthals (Alex and Boaretto, 

2014), while a tooth in Layer 3 was dated to 38.9 + 2.5 ka by Electron 

Spin Resonance (ESR) method (Plackwell et al.. 2014, 2018). According 

to conventional Optically Stimulated Luminescence of quartz (OSL), the 

sample OSL 4 provides a chronology of 69.4 + 6.3 ka (Table 1). Hence, 

sediment in the upper portion of Layer 4, bordering with Layer 3, was 

potentially deposited during MIS 4 (boundaries: 74-59 ka; Martinson 

et al.. 1987). Consequently, Layer 3 could correspond to MIS 4 or to 

early MIS 3, though changes over time in the cosmic dose rate and in the 

water content could have made the mean dose rate lower, leading to an 

older age estimate. Therefore, a MIS 5a age cannot be totally ruled out 

(Mihailović et al., 2022a). 

Layer 4 is subdivided into three levels: Layer 4a, with a weighted 

mean age of 92.9 + 5.2 ka; Layer 4b, with an average age of 101.9 + 3.8 

ka; Layer 4c, with an average age of 117.4 + 6.6 ka (Blackwell et al., 

2014). According to Blackwell et al. (2018), Layer 4a corresponds to MIS 

5b, while Layer 4b corresponds to the end of MIS 5c. Additionally, 

Layers 4a, 4b and 4c were dated using ESR method (Mihailović et al., 

2022a). Layer 4a, was dated to a mean age of 93.1 + 1.4 ka (correlate 

with MIS 5b); Layer 4b, with only one tooth without being likely 

reworked to an age of 110.5 + 11.1 ka (correlate with 5e-5c); Layer 4c, 

with an average of 107.4 + 2.8 ka (correlate with 5e-5c). Mihailović 

et al. (2022a) suggest that Layers 4b and 4c could belong to the same 

Table 2 

NISP of anthropogenic modification, gnaw and digestion on animal remains per 

layer. 

Layer Cutmarks Impact marks Gnaw and digestion marks 

2 8 7 252 

3 13 16 327 

4a 87 44 885 

4b 9 9 219 

4c 1 2 27 

Quaternary Science Reviews 330 (2024) 108600 

geochemically uniform layer, just as the three teeth found not reworked 

at both layers (4b and 4c) correlate well with MIS 5e-5c. 

It is clear from the former that there is no precise age model for the 

sedimentary sequence at Pešturina Cave, principally due to potential 

reworking of some teeth, as well as possible dating inaccuracies from the 

“lumpy” nature of the sediment. This can be appreciated mainly at Layer 

3, which was significantly disturbed by erosion, bioturbation, and recent 

anthropogenic activities, causing inconsistent dates ranging from MIS 4 

to MIS 3 (boundaries: 70-38 ka; Plackwell et al., 2014; Alex et al., 2019). 

Preliminary studies have provided palaeoenvironmental proxies 

from Pešturina based on palaeontological and sedimentological char- 

acteristics of the archaeological layers (Milosević, 2016; Majkić et al., 

2018; Boev and Milošević, 2020; Jovanović et al., 2020). 

3. Human remains 

Three human fossil remains from Pešturina Cave have been analysed 

so far (Roksandic et al., 2017; Radović et al., 2019; Lindal et al., 2020), 

namely a left lateral mass of an atlas (Pes-1), a juvenile radius shaft 

(Pes-2) and isolated tooth (Pes-3), all oftthem dating between MIS 5c and 

MIS 3. The fossil Pes-1 was found from the bottom of Layer 2. The layer 

is dated to 31-29 ka cal BP. Pes-1 was classified as Anatomically Modern 

Human, based on metric and non-metric morphological traits (Lindal 

et al., 2020). Thus, considering that the lithic material belongs to the 

Upper Palaeolithic (Gravettian) and that two of the four dates are 

consistent with it (Alex and Boaretto, 2014; Alex et al., 2019), the 

specimen is best dated to the end of MIS 3. The fossil Pes-2, a juvenile 

radius shaft, was recovered from the contact zone between Layers 3 and 

4a. Based on the traits such as the teardrop-shaped cross-section and the 

apparently strong lateral curvature of the diaphysis, the analysis of the 

specimen suggested certain affinities with Homo neanderthalensis (Lindal 

et al., 2020; Mihailović et al., 2022a). Due to its stratigraphic position 

between Layers 3 and 4a, and based on the available dating, the frag- 

ment falls within a very wide chronological range of 92.9-38.9 ka (i.e., 

MIS 5b-3). The fossil Pes-3, an isolated upper first molar, was recovered 

from Layer 4b and dates to MIS 5c (Mihailović et al., 2022a). Previous 

analysis carried out on Neanderthal molars (Martin et al., 2017; Ortiz 

et al., 2017), as well as an excellent state of preservation (Radović et al., 

2019), allowed to assign the specimen Pes-3 to Neanderthal. 

4. 4. Lithic assemblages 

Pešturina Cave lithic assemblages have not been published to the 

same extent. Artifacts from Layers 4a—4c, collected until 2017, were 

published in detail as a part of the same study (Mihailovic et al., 2022a), 

while those from Layers 2 and 3, which originated from the initial ex- 

cavations (2005–2011), were published only as a part of a single pre- 

liminary report (Mihailović and Milosević, 2012). 

Lithic assemblages from Layers 4a-4c were attributed to the Central 

European Charentian (Mihailović et al., 2022a), and show a strong 

Quina component, which is primarily manifested in the knapping 

technology, and to a lesser extent in the repertoire of tools. Artifacts are 

made predominantly of quartzite and quartz (60–75%). In terms of the 

knapping products, there are cores and flakes struck via Quina, discoid 

and Levallois methods, while the most common tool types are side- 

scrapers, denticulated and notched pieces. Although the artifacts from 

Layer 3 were preliminarily attributed to Denticulated Mousterian 

(Mihailović and Milosević, 2012), subsequent (still unpublished) 

research showed that the structure of this assemblage does not differ 

significantly from Layer 4. The new analyses also showed that the 

(minute) differences between the assemblages from Layers 4b, 4a and 3 

are not due to the presence of different types of Mousterian but are more 

likely resulting from differences in the duration and character of 

settlement. 

The occupation intensity was somewhat more pronounced during 

the deposition of Pešturina Layer 4b, which yielded the highest number
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of artifacts and where cortical pieces are least represented. In contrast, 

artifact assemblages from Layers 4a and 3 (with significantly fewer 

finds) contain more cortical pieces, indicating a shorter occupation in- 

terval. In Layer 4, the highest concentration of finds was recorded in the 

central and southern parts of the cave, while in Layer 3, the eastern part 

that is closer to the cave entrance, showed the highest concentration. 

Pešturina Layer 2 yielded relatively few finds (79 artifacts until 

2012) which were all attributed to Gravettian. The largest number of 

artifacts from this layer originated from the southeastern part of the 

cave. All artifacts are made of chert. Among unretouched artifacts, un- 

retouched flakes and blades predominate, while backed points and 

bladelets, truncated pieces and retouched blades predominate among 

the retouched tools. The number and character of finds from Layer 2 also 

indicate a short-term occupation. 

5. Modern climate and vegetation 

Pešturina is located on the hillock on the western slopes of the Suva 

Planina Mountain (Carpatho-Balkan mountain range; Fig. 1), which falls 

within a transitional zone between the Mediterranean and continental 

distinctive and contrasted climatic zones. The Mediterranean climate is 

characterised by warm and dry summers, while winters are mild and 

rainy. The central European climate is marked by rain falls throughout 

the year (with the maximum occurring in the summer months). In the 

south of the Balkan Range, in the plain of Thrace, a milder climate 

prevails under the influence of the Mediterranean air masses, while to 

the north the climate is sharply continental, with winters slightly colder 

than might be expected for these latitudes (Marincek et al., 1980; 

Polunin, 1980; Bohn and Neuhausı, 2004). 

The climate in the vicinity of the cave is mild, and generally warm 

and temperate. Suva Planina Mountain presents significant rainfall, 

even in the driest months, with most precipitation falling in winter. The 

nearby meteorological station in Niš shows an annual average temper- 

ature of 11.9 "C (—0.4 "C in the coldest month, 23.3 "C in the warmest 

month), which can reach maxima above 29 "C in summer, and annual 

average precipitation of 607 mm (https://es.climate-data.org/europe/s 

erbia/nis/nis-1268/). 

The hilly-montane landscape from Central Balkans, where numerous 

Middle and Upper Palaeolithic archaeological sites are located (the 

majority of them situated between 300 and 500 m elevation), is char- 

acterized by mostly lowland and some highland basins separated by 

canyons, gorges, and mountains (Mihailovicć, 2020). Suva Planina is a 

Tertiary fold mountain, being a southern extension of the Carpathians, 

together with the other Stara Planina mountains. They are largely 

composed of limestone, with some igneous and crystalline rocks exposed 

in the west and central areas (Polunin, 1980; Ager, 1980). The topog- 

raphy varies from river corridors below 200 m to peaks that do not 

exceed 2000 m, which limits the presence of persistent glaciations. 

The Balkan Peninsula rises as the richest area of Europe by plant-life 

(Polunin, 1980; Stevanović et al., 2007; Hewitt, 2011). It has been 

considered that in the Balkans there are over 6530 species of native seed 

plants, of which >2650 are endemic (Turrill, 1944; Krystufek and Reed, 

2004; Stevanović et al., 2007; Tomović et al., 2014; Španiel and 

Resetnik, 2022). These numbers are relevant with respect to the total 

number of native European species given in Flora Europaea (Tutin et al., 

1964-1980), over 11000, about 3500—4000 of which are endemic to 

Europe. 

The flora and vegetation of the Balkan region is mainly influenced by 

four factors: climate, altitude, soils and anthropogenic activity (Hllen- 

berg, 1988; Reed et al., 2004; Thompson, 2005; Španiel and Rešetnik, 

2022). In the same way, the richness of the Balkan flora is a result of 

several conditions: (1) the surviving Tertiary and Quaternary species, 

(2) the fragmentation, isolation, and migration of species due to changes 

in level and extent of the Mediterranean Sea, causing the formation of 

new habitats, (3) the gradual migration of species of other nearby floras, 

particularly the central European, Anatolian, and Pontic floras, (4) 
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anthropic influence, introducing species from outside the Balkan 

Peninsula. Thus, the Balkans appear as one of the main refuge areas in 

Europe, along with the Iberian Peninsula and the Italian Peninsula, both 

for the formation of new species and for migration route of species. 

The Suva Planina is mainly formed by central European vegetation 

(Bohn and Neuhausl, 2004), as follows. 

- 0-700 m: mixed oak-hornbearn forest of Quercus cerris, Q. frainetto, 

Q. robur, Q. petraea, Q. polycarpa and Carpinus betulus with Fagus 

sylvatica, Ulmus minor, U. glabra, Pyrus pyraster, Prunus avium, Acer 

campestre, A. platanoides, A. pseudoplatanus, Tilia tomentosa, 

T. cordata, and Fraxinus excelsior. Commonly associated shrubs are: 

Corylus avellana, C. colurna, Crataegus monogyna, Prunus spinosa, 

Euonymus europaeus, Frangula alnus, Cornus sanguinea, C. mas, Loni- 

cera caprifolium, Ligustrum vulgare, Staphylea pinnata, Sambucus nigra, 

and Viburnum lantana. Sweet chestnut woods may occur locally in 

this climatic region, widely mixed with oaks. Some of the most 

common herbaceous species are: Helleborus odorus, H. dumetorum, 

Franthis hyemalis, Epimedium alpinum, Vicia oroboides, Hacquetia epi- 

pactis, Cyclamen purpurascens, Lamium orvala, Knautia drymeia, 

Erythronium dens-canis, Convallaria majalis, and Galanthus nivalis. 

— 700-1700 m: montane deciduous forests are mainly composed of 

beech forests of Fagus sylvatica in the northern and central Balkan 

region. Other trees often associated with these beech forests, but 

typically only as scattered individuals, are: Abies alba, Picea abies, 

Pinus sylvestris, P. peuce, Populus tremula, Carpinus betulus, Corylus 

colurna, Ulmus glabra, Sorbus aucuparia, S. torminalis, S. aria, Acer 

platanoides, and A. pseudoplatanus. Shrubs include: Juniperus com- 

munis, Salix caprea, Alnus viridis, Ribes spp., Daphne laureola, 

D. mezereum, Vaccinium myrtillus, and Lonicera spp. Montane conif- 

erous forests are mostly formed of Abies alba, Picea abies, Pinus nigra, 

and P. sylvestris. They may occur mixed with Ostrya carpinifolia, Fagus 

sylvatica, Sorbus aucuparia, S. torminalis, Acer opalus, A. platanoides, 

Tilia platyphyllos, Fraxinus excelsior, or in stands of single species. 

Below 1000 m there are relict forests of Fagus, together with Prunus 

laurocerasus. 

— 1700—3000 m: Sub-alpine and alpine communities consist of Pinus 

mugo, Juniperus communis subsp. nana, Alnus viridis, and smaller 

shrubs such as Rosa spp., Genista tinctoria, and Daphne oleoides. Other 

remarkable species are: Arctostaphylos uva-ursi, Bruckenthalia spicu- 

lifolia, Chamaecytisus hirsutus, C. heuffelii, Rnamnus alpinus, Vaccinium 

myrtillus, V. vitisidaea, and V. uliginosum. Here are significant relict 

species such as Rhynchocorys elephas, Haberlea rhodopensis, Primula 

jfrondosa, and Micromeria frivalsskyana. Additionally, in these 

mountains the white-flowered Daphne blagayana as well as D. oleoides 

are found, and the primula-like Cortusa matthioli, which has a dis- 

tribution as far east as the Himalaya. Rhododendron myrtifolium, a 

small shrub of the Carpathians, is also found in the central Stara 

Planina and in the eastern Rila Mountains. 

In the west region of the Stara Planina, nearly Suva Planina, the 

following species are found: Aconitum firmum, Vicia truncatula, Daphne 

laureola, D. oleoides, Primula halleri, Androsace obtusifolia, A. hedraeantha, 

Symphyandra wanneri, Scutellaria alpina, and Ramonda serbica. In the 

westernmost part, on the hills of Vrška Ćuka, there are some interesting 

species including Eranthis hyemalis var. bulgaricus and Centaurea 

atropurpurea. 

6. Materials and methods 

The sampling of the sediment samples was conducted on a vertical 

stratigraphic profile, as it is indicated for archaeological deposits (Gir- 

ard, 1975), during the 2021 and 2022 fieldwork campaigns. The samples 

were taken from three archaeological profiles (samples ID Pes-Sed1 to 

Pes-Sed23) at the Southern sector, in Layers 2, 3, 4a and 4b (squares 

P11/c-P11/d, O11/b-P11/c, O10 of the excavation grid; Figs. 2 and 3;
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Fig. 3. Lithostratigraphical layers and profiles sampled for pollen analysis in 

Pešturina Cave with the position of pollen sediment samples. 

Table 3). Exposed sediment surface was cleaned back and discarded to a 

depth of 10–15 cm, to avoid potential sources of contamination and/or 

recent bioturbation. In Layer 1 sampling was not carried out due to the 

presence of material disturbed by recent human activities. Similarly, it 

as not possible to take samples from the lower part of Layer 4b, and 

from Layers 4c and 5, since these profiles were and remain buried. 

The coprolite assemblage analysed was recovered at Pešturina Cave 

during the 2021 and 2022 fieldwork campaigns (samples ID Pes-Cop1 to 

Pes-Cop16), from Layers 3, 4a, 4b and 4c (squares H11/c, H12/d, I12/a, 

I12/b, L11, M11, M12, M12/a, M12/d, 010, O11, O11/b, P10, P11/c of 
the excavations grid; Fig. 4; Table 3). These large coprolites have been 

associated as belonging to carnivores (Mihailović et al., 2022a), the 

morphology of these fragments being consistent with the ice age spotted 

hyaena (Crocuta crocuta spelaea) coprolite granulates from the European 

Pleistocene (Diedrich, 2012). Indeed, their association with bone frag- 

ments of spotted hyaena, whose remains are the most numerous among, 

the carnivores, mainly in Layer 4 (Milosević, 2020; Mihailović et al., 

2022a), confirms their attribution to hyaena. The colour of the copro- 

lites varied on the outside from pale yellow to brown, and inside from 

pale brown to white (Fig. 4), similar to other hyaena-associated copro- 

lites from the European Pleistocene (Carrion et al.. 2001, 2007, 2008, 

2018, 2019a; Ochando et al., 2020a). 

In the laboratory, (1) the surface layer of each coprolite was cleaned 

using distilled water under pressure; (2) the surface layer was cut 

opened with a steel spatula; and (3) material from inside was scraped out 

to minimize contamination from external face. After the samples were 

weighed, both sediment and coprolites (Table 3), the “Classic Chemical 

Method” was followed for the extraction of palynomorphs (Erdtman, 
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1969; Dimbleby, 1985), with the modifications proposed by Girard and 

Renault-Miskovsky (1969). To evaluate the quality of the laboratory 

processing, we added three tablets of Lycopodium spores (BATCH No. 

177745.500) to each sediment sample and one tablet of Lycopodium 

spores (BATCH No. 710961.500) to each coprolite sample. After the 

chemical treatment, the samples were mounted on slides with the use of 

liquid paraffin. The palynological identification was made by conven- 

tional microscopy (400x and 1000x) using an optical microscope. We 

used the palynomorph reference collection of the Department of Envi- 

ronmental Biology (Sapienza University of Rome) and of the Department 

of Plant Biology (University of Murcia). Along with spores and NPPs 

(Non-Pollen Palynomorphs), we excluded from the total pollen sum the 

counts of Asteroideae, Cichorioideae, Centaurea, and Echinops, assuming 

they might be overrepresented due to taphonomic and preservation 

processes (Havinga, 1984). The pollen count data was treated with the 

Tilia Graph 1.7.16 program in order to plot the pollen diagrams. 

The pollen group established for Pinus taxa should be clarified. Pine 

pollen grains >50 u m were generally included within the Pinus hale- 

pensis - pinea type, except for grains >50 u m with thickenings in the 

distal exine, which belong to Pinus pinaster (Desprat et al., 2015). Pine 

pollen grains <50 u m were normally included in the Pinus nigra – syl- 

vestris type. However, due to a large number of intermediate pollen 

morphotypes (~ 50 u m), we decided to group them into a single taxon 

called Pinus, which may represent several species (Pinus halepensis, 

P. pinea, P. nigra, P. sylvestris, P. mugo and P. heldreichii). 

7. Palynological results 

7.1. Sediment samples 

All the analysed sediment samples (23 out of 23 samples; ID Pes-Sed1 

to Pes-Sed23) contained pollen grains (Figs. 5—7). A total of 8840 

palynomorphs were identified, including 8203 pollen grains and 637 

spores. The percentage of indeterminable grains is lower than 7% 

(Table 3), and the preservation is generally good. The number of pollen 

types per sample varies between 14 and 39, with a total of 83 recognized 

taxa. The pollen concentration varies between 222 and 278,760 grains/g. 

(Table 5). Pollen diagrams, divided into arboreal pollen (AP), non- 

arboreal pollen (NAP) and spores, were plotted (Figs. 5 and 6; Supple- 

mentary Fig. 1) together with a synthetic diagram with the main taxa 

and ecological groups (Fig. 7). Conifers include Pinus, Juniperus, Abies, 

Cedrus, and Taxus. Mesophytes include deciduous Quercus, Tilia, Betula, 

Corylus, Acer, Carpinus betulus, Ulmus/Zelkova, Alnus, Castanea, Fraxinus, 

Ilex, Juglans, Carpinus orientalis/Ostrya, Populus, Celtis, Sambucus nigra, 

Fagus, Salix, Daphne t., and Ribes. Thermophytes include Cistus, Buxus, 

Olea, Erica, Pistacia, Myrtus, Phillyrea, Viburnum, and Sambucus ebulus. 

Xerophytes include Artemisia, Amaranthaceae, Lamiaceae, and Aspho- 

delus (Figs. 7 and 11). 

7.1.1. Layer 4b 

In the lower half of the layer (samples Pes-Sed23-Pes-Sed22), a 

predominance of non-arboreal pollen appears (72–76%), while in the 

'upper half (samples Pes-Sed21-Pes-Sed19), an increase in the amount of 

arboreal pollen occurs (51–58%) (Figs. 5—7). The most remarkable 

aspect in the lower half is the abundance of Amaranthaceae (40–42%), 

Poaceae (14-16%), Artemisia (7-8%), Plantago (3-4%), and Car- 

yophyllaceae (1–3%). NAP includes also Lamiaceae, Apiaceae, Bor- 

aginaceae, Cannabaceae, Epilobium, Typha, Urticaceae, and Cyperaceae. 

In the AP it is important to emphasise the presence of deciduous Quercus 

(8–10%) and Pinus (7–9%). In addition, Juniperus, Betula, Corylus, Tilia, 

Ulmus/Zelkova, Olea, and Genisteae are also common. In the upper half 

of the layer, Tilia (41-15%) is abundant, reaching its maximum here. 

Deciduous Quercus fluctuates between 16 and 18%, while Pinus is 

around 11%. Juniperus, Betula, Fraxinus, Ulmus/Zelkova, Rhamnus, 

Genisteae, Daphne, Cistus, and Rosaceae undiff. are present in significant 

amounts, while Abies, Taxus, Acer, Carpinus betulus, Castanea, Corylus,



Table 3 

Summary of palynological features at the Pešturina sequence. 

Sample Layer - Square Material bag Gross Weight (g) Net Weight (g) Concentration (grains/g) Indeterminable (%) Pollen sum '"Pollen sum Number of taxa (Pollen) Spores sum 

Sediment Samples 

Pes-Sed1 2 P11/c-P11/d 4 28.00 11.40 63,745 3.46 378 231 14 29 

Pes-Sed2 2 P11/c-P11/d 3 28.00 9.90 52,795 1.90 375 210 17 127 

Pes-Sed3 2 P11/c-P11/d 2 28.00 11.30 34,808 3.38 642 207 18 45 

Pes-Sed4 2 P11/c-P11/d 1 28.00 10.00 43,471 2.26 577 221 22 25 

Pes-Sed5 2 O10 78e 50.10 29.10 278,760 0.74 291 270 23 0 

Pes-Sed6 3 O11/b-P11/c 4 28.50 11.20 63,428 3.98 395 226 21 25 

Pes-Sed7 3 O11/b-P11/c 3 28.30 11.90 47,484 5.91 375 237 25 20 

Pes-Sed8 3 O11/b-P11/c 2 28.40 12.80 7731 4.50 339 222 23 57 

Pes-Sed9 3 O11/b-P11/c 1 28.60 11.90 10,781 4.31 382 209 25 115 

Pes-Sed10 3 O10 77e 50.20 28.20 72,710 2.79 331 251 31 8 

Pes-Sed11 3 O10 76e 50.50 26.40 3850 2.10 319 242 31 5 

Pes-Sed12 3 O10 75e 50.00 23.50 10,021 1.75 283 228 28 4 

Pes-Sed13 4a O11/b-P11/c 4 28.70 13.80 11,638 5.19 314 212 24 23 

Pes-Sed14 4a O11/b-P11/c 3 28.20 14.80 13,146 4.39 342 228 21 28 

Pes-Sed15 4a O11/b-P11/c 2 28.50 15.10 9095 4.04 303 223 26 11 

Pes-Sed16 4a O11/b-P11/c 1 28.80 15.10 15,771 6.52 299 230 29 14 

Pes-Sed17 4a O10 74e 50.60 23.20 7193 1.86 437 376 32 18 

Pes-Sed18 4a O10 73e 50.10 24.80 5225 1.65 344 303 39 8 

Pes-Sed19 4b O11/b-P11/c 3 28.7 15.20 14,626 6.31 323 222 33 13 

Pes-Sed20 4b O11/b-P11/c 2 28.7 14.20 13,383 3.81 317 210 33 27 

Pes-Sed21 4b O11/b-P11/c 1 28.7 13.30 8156 5.10 358 217 35 29 

Pes-Sed22 4b O10 72e 50.20 26.10 222 1.80 230 222 22 3 

Pes-Sed23 4b O10 7le 50.20 20.90 382 1.31 249 229 19 3 

TOTAL 8203 5426 637 

Coprolites 
Pes-Copl 3 O11/b-P11/c 1 8.33 8.33 2998 4.29 237 210 16 0 

Pes-Cop2 3 O10 2 4.39 4.39 46,031 4.98 277 241 21 1 

Pes-Cop3 3 MI1 8le 15.67 15.67 2882 1.83 224 218 13 1 

Pes-Cop4 3 MI2 104e 18.63 18.63 821 2.43 223 206 24 2 

Pes-Cop5 3 M12/a 122e 16.14 16.14 2541 3.32 227 211 23 0 

Pes-Cop6 4a O11/b-P11/c 3 3.56 3.56 24,465 1.16 288 258 17 0 

Pes-Cop7 4a MI1 111le 8.52 8.52 2005 1.86 221 215 13 6 

Pes-Cop8 4a O11 157e 9.74 9.74 10,890 1.72 246 233 15 4 

Pes-Cop9 4a O11/b-P11/c 4 5.12 5.12 4682 2.74 274 219 16 8 

Pes-Cop10 4a P10 146e 4.50 4.50 9068 2.38 220 210 17 21 

Pes-Cop11 4a M12/d 129e 17.22 17.22 409 3.40 224 206 17 2 

Pes-Cop12 4a M12/d 129e 13.09 13.09 1265 2.52 257 238 22 4 

Pes-Cop13 4a I12/b 155e 15.60 15.60 1117 3.27 218 214 19 0 

Pes-Cop14 4a H12/d 178e 14.60 14.60 328 4.93 208 203 16 20 

Pes-Cop15 4a H12/d 178e 14.17 14.17 1947 2.80 234 214 13 1 

Pes-Cop16 4c I12/a 210e 12.92 12.92 718 2.39 222 209 21 0 

TOTAL 3800 3505 70 

Sterile Coprolites 
1 2/3 O11 57e 3.67 3.67 _ _ Sterile – – Sterile 

2 4 LIl 110e 8.83 8.83 – – Sterile – – Sterile 

3 4a M12/d 129e 15.48 15.48 _ _ Sterile _ – Sterile 

4 4b HI1/c 184e 24.36 24.36 _ _ Sterile _ – Sterile 

% Asteroideae, Cichorioideae, Centaurea, and Echinops excluded. 
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Fig. 4. Coprolite specimens from Pešturina Cave (Pes-Cop1 to Pes-Cop16) from Layers 3, 4a and 4c (a-p). 

Fagus, Celtis, Ilex, Sambucus ebulus, Buxus, Myrtus, Pistacia, Phillyrea, and 

Ribes show discontinuous occurrences. In NAP, Poaceae (17–21%) and 

Artemisia (9–14%) are abundant. Amaranthaceae falls to below 3%. 

Additionally, Caryophyllaceae, Asteroideae, Cichorioideae, Anthyllis, 

Vicia, Apiaceae, Armeria, Plantago, Brassicaceae, Dipsacaceae, Epilobium, 

Lamiaceae, and Rubiaceae are frequent. The abundance of Micro- 

sporonites and Monoporisporites is noticeable (Supplementary Fig. 1). 

Trilete spores, Inapertisporites, Pluricellaesporites, Polycellaesporonites, 

Zygnemataceae, and Bryophyta appear. 

7.1.2. Layer 4a 

This layer includes samples Pes-Sed18 to Pes-Sed13 (Figs. 5—7). AP 

consistently presents levels >60%, with peaks >80%. This layer is 

characterised by high percentages of deciduous Quercus (19-–40%), Pinus 

(10–22%), and Tilia (6–13%). Juniperus does not exceed 3%, while 

Genisteae reaches almost 6%. Accompanying AP are Betula, Carpinus 

betulus, Castanea, Corylus, Ulmus/Zelkova, Rhamnus, Ericaceae, Cistus, 

and Rosaceae undiff. It is noteworthy the occasional appearance of 

Abies, Acer, Alnus, Carpinus orientalis/Ostrya, Fagus, Juglans, Fraxinus, 

Salix, Celtis, Ilex, Viburnum, Buxus, Olea, Phillyrea, Ligustrum, and Cra- 

taegus. In NAP, Poaceae (6–20%) and Artemisia (5–11%) dominate. 
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Fig. 6. Percentage pollen diagram of the non-arboreal elements from sediment 

between lithostratigraphical layers. 

Amaranthaceae, Caryophyllaceae, Asteroideae, Cichorioideae, Apia- 

ceae, Plantago, Campanulaceae, Convolvulus, Dipsacaceae, Epilobium, 

Euphorbiaceae, Lamiaceae, Paronychia, and Urticaceae are also com- 

mon. The presence of Monoporisporites and Microsporonites stands out 

(Supplementary Fig. 1). Similarly, other algal spores, Zygnemataceae, 

Bryophyta, and Pteridophyta Trilete spores are present. 

7.1.3. Layer 3 

This layer includes pollen samples Pes-Sed12 to Pes-Sed6 (Figs. 5—7). 

NAP is dominant with total values of 50-70%, being characterised by 

high percentages of Poaceae (14–31%), Artemisia (8-29%), Lamiaceae 

(2–7%) and Amaranthaceae (2–6%). The highest percentages of Plantago 

(1-5%) and Caryophyllaceae (1—4%) are recorded. Asteroideae, 

Cichorioideae, Apiaceae, Convolvulus, Dipsacaceae, Epilobium, Liliaceae, 

Rubiaceae, and Cyperaceae are highly represented throughout the 

whole layer. Furthermore, Armeria, Brassicaceae, Boraginaceae, Cam- 

panulaceae, Cannabaceae, Geraniaceae, Ramonda, Helianthemum, 

'Knautia, Asphodelus, Linum, Primula, Ranunculaceae, Scrophulariaceae, 

Typha, Urticaceae, and Verbascum appear. In AP, it is worth highlighting 

the presence of deciduous Quercus (10–28%), Pinus (4-10%), and Gen- 

isteae (2–6%). AP also include Juniperus, Betula, Castanea, Corylus, Tilia, 
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samples of Pešturina Cave. Black dots for percentages <3%. Black lines for divisions 

Ulmus/Zelkova, Ericaceae, and Cistus, as well as a limited presence 

(<2%) of Cedrus, Taxus, Acer, Alnus, Carpinus betulus, Carpinus orientalis/ 

Ostrya, Fraxinus, Populus, Celtis, Sambucus nigra, Olea, and Ribes. Pter- 

idophyta Trilete spores, Monoporisporites, Microsporonites, other algal 

spores, and Zygnemataceae are frequent (Supplementary Fig. 1). 

7.1.4. Layer 2 

This layer includes samples Pes-Sed5 to Pes-Sed1 (Figs. 5—7). The 

NAP is dominant, reaching levels close to 88%, with high frequencies of 

Artemisia (26–38%), Poaceae (26–37%), and Amaranthaceae (3–9%), 

accompanied by Caryophyllaceae, Asteroideae, Cichorioideae, Plantago, 

Dipsacaceae, Epilobium, Knautia, Lamiaceae, and Rubiaceae. Apiaceae, 

Brassicaceae, Boraginaceae, Campanulaceae, Convolvulus, and Aspho- 

delus are also present. Within AP, deciduous Quercus (3–13%), Pinus 

(2–9%), and Genisteae (1–5%) should be noted. Juniperus, Corylus, Tilia, 

and Ulmus/Zelkova are very well represented throughout the sequence, 

while Acer, Alnus, Betula, Carpinus betulus, Buxus, Daphne, and Cistus 

show sporadic occurrences. The presence of Pteridophyta Trilete spores, 

Monoporisporites, Microsporonites, Zygnemataceae, and other fungal 

spores is significant (Supplementary Fig. 1).
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Fig. 7. Synthetic pollen diagram of ecological groups and the main pollen contributors from sediment samples of Pešturina Cave. 

7.2. Coprolites 

A total of 20 coprolites were analysed, 16 being polleniferous 

(samples ID Pes-Cop1 to Pes-Cop16) and four being sterile coprolites 

(Figs. 8—10). A total of 3875 palynomorphs were identified (3800 pollen 

grains and 75 spores). The percentage of indeterminable types is <5% 

(Table 3). The number of pollen types varies between 13 and 24, with a 

total of 52 identified taxa. The pollen concentration ranges between 328 

and 46,031 grains/g (Table 3). Palynological diagrams represent AP, 

NAP, together with a synthetic diagram with the main taxa and 

ecological groups (Figs. 8—10). Conifers include Pinus, Juniperus, and 

Cedrus. Mesophytes include deciduous Quercus, Tilia, Betula, Corylus, 

Acer, Carpinus betulus, Ulmus/Zelkova, Alnus, Castanea, Fraxinus, Ilex, 

Juglans, Carpinus orientalis/Ostrya, Populus, Sambucus nigra, Fagus, and 

Salix. Thermophytes include Cistus, Buxus, Olea, Erica, Pistacia, and 

Myrtus. Xerophytes include Artemisia, Amaranthaceae, and Lamiaceae 

(Figs. 10 and 11). The number of spores present in the coprolites was low 

(see Spore Sum in Supplementary Fig. 1). 

7.2.1. Layer 4c 

This layer only includes coprolite Pes-Cop16 (Figs. 8_10). The AP is 

>60%, with dominance of Pinus (37%). Deciduous Quercus is 18%, while 

Pistacia does not exceed 2%. AP also includes Juniperus, Betula, Corylus, 

Juglans, Sambucus nigra, Myrtus, Genisteae, Ericaceae, and Cistus. NAP is 
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Fig. 8. Percentage pollen diagram of the woody component from the coprolites of Pešturina Cave. Black dots for percentages <3%. Black lines for divisions between 

lithostratigraphical layers. 
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Fig. 10. Synthetic pollen diagram of ecological groups and the main pollen contributors from the coprolites of Pešturina Cave. 

mainly composed of Poaceae (15%), Amaranthaceae (9%), and Artemisia 

(8%). Additionally, Caryophyllaceae, Asteroideae, Cichorioideae, Plan- 

tago, Dipsacaceae, Lamiaceae, and Liliaceae are frequent. Spores are 

absent (Supplementary Fig. 1). 

7.2.2. Layer 4a 

This layer includes coprolites Pes-Cop15 to Pes-Cop6 (Figs. 8-10). 

NAP is predominant across all samples, reaching values > 93%, except 

Pes-Cop12, in which the lowest percentage of NAP (40%) is recorded. 

The most noteworthy characteristic is the abundance of Artemisia 

(10–50%), Poaceae (14-46%), and Amaranthaceae (2-16%), while 

Caryophyllaceae does not exceed 3%. Other NAP includes Asteroideae, 

Cichorioideae, Apiaceae, Plantago, Lamiaceae, Rubiaceae, Typha, Urti- 

caceae, and Cyperaceae. Among AP (Fig. 8), Pinus (2-30%), deciduous 

Quercus (1–19%), and Juniperus (1–12%) are remarkable. Occurrences of 

Genisteae, Fraxinus, Ulmus/Zelkova, and Cistus are also ecologically 

meaningful, as well as the occurrences of Acer, Alnus, Betula, Carpinus 

betulus, Castanea, Corylus, Juglans, Tilia, Populus, Salix, Ilex, Olea, Pista- 

cia, and Rosaceae undiff. Other fungal spores and Microsporonites are 

present (Supplementary Fig. 1). 

7.2.3. Layer 3 

This layer includes coprolites Pes-Cop5 to Pes-Copl (Figs. 8—10). 

NAP oscillates between 61 and 91%. Poaceae (22–51%) reaches the 

maximum peak of the sequence in Pes-Cop1. We found high levels of 

Artemisia (14-–46%) and Amaranthaceae (5-9%). Caryophyllaceae, 

Asteroideae, Cichorioideae, Apiaceae, Plantago, Dipsacaceae, and Lam- 

iaceae are very well represented throughout the layer. In AP it is worth
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Fig. 11. Comparative results of sediment and coprolite pollen from Pešturina Cave. 

noting deciduous Quercus (1–18%), Pinus (2–8%), Juniperus (1–4%), and 

Genisteae (1–3%), accompanied by Cedrus, Acer, Alnus, Betula, Carpinus 

betulus, Carpinus orientalis/Ostrya, Castanea, Corylus, Fagus, Juglans, Tilia, 

Fraxinus, Populus, Salix, Ulmus/Zelkova, Sambucus nigra, Buxus, Ilex, 

Cistus, and Rosaceae undiff. Spores are represented by Glomus, Dicel- 

laesporites, Multicellites, and Zygnemataceae (Supplementary Fig. 1). 

8. Comparison of pollen in sediment samples and in coprolites 

at Pešturina Cave 

Pollen samples recovered from the sediment of archaeological pro- 

files may capture multi-decadal periods of sedimentation, while copro- 

lite pollen would reflect the environmental conditions of shorter time 

periods. Additionally, sediment pollen would mostly describe the local 

environment in the vicinity of the cave, whereas the pollen composition 

of the coprolites may show the diversity of the regional environment, 

reflecting different habitats coexisting within a patchy landscape (Scott 

et al., 2003; Carrion et al., 2018), which is generally wider than 15 km 

but no more than 50 km from hyaena den (Argant, 2004; Argant and 

Dimitrijevic, 2007). Furthermore, the behaviour of the animals that 

produced the coprolites can be diverse (Scott, 1987; Scott and Brink, 

1992; Scott et al., 2003), so that coprolites collected at the same depths 

might be reflecting a mosaic of different environments occupied by 

different animals rather than a temporal record of different vegetation 

stages (Carrion et al., 2008, 2018). As pointed out by Carrion et al. 

(1999b), the archaeological pollen records, which are often discontin- 

uous and/or altered by humans, should not be used to assess vegeta- 

tional and climatic fluctuations with the same confidence as when they 

are interpreted from continuous and pristine lacustrine or marshy pollen 

records. In this sense, taxonomic differences between sediment samples 

and coprolites must be taken with some caution. 

The pollen content of sediments and coprolites from Late Pleistocene 
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caves has been directly compared to shed light into past environments at 

Gorham's and Vanguard Caves, Gibraltar (Carrion et al., 2008, 2018), 

Carihuela Cave, Spain (Carrion, 1990, 1992a; Fernandez et al., 2007; 

Carrion et al., 2019a; Ochando et al., 2020a), and Abrigo do Lagar 

Velho, Portugal (Queiroz, 1999; Queiroz et al., 2002; Ochando et al., 

2022c). The combined sediment and coprolite pollen record from 

Pešturina provides an additional and unique opportunity to reconstruct 

the palaeoenvironment during the Late Pleistocene in relation to human 

occupations. 

In the Pešturina vegetation sequence, mixed oak-pine open forests 

with a conspicuous presence of Tilia, strongly inertial throughout MIS 5 

(Layers 4a, 4b and 4c), are a characteristic feature. These forests are 

especially revealed by sediment samples (Fig. 1 1; Supplementary Figs 2 

and 5). The coprolites of MIS 5 reflect more open landscapes with 

characteristics typical of parkland or even steppe environments (Fig. 11; 

Supplementary Figs 2 and 3), with the dominance of Poaceae and 

Artemisia, along with Pinus and Quercus. Abundance of grasses, and 

particularly high diversity of herbaceous types, may reflect prey diet of 

hyaenas, as in Vanguard Cave (Carrion et al., 2018). At Pešturina, the 

combination of coprolites and sediment shows that different environ- 

ments coexisted during the last interglacial (MIS 5). There was a high 

diversity of woody plants, including abundant Pinus, Juniperus, decidu- 

ous Quercus, Carpinus betulus, Corylus, Ulmus/Zelkova, and Genisteae, 

which were continuously accompanied by broad-leaved trees such as 

Acer, Alnus, Betula, Carpinus orientalis/Ostrya, Castanea, Fagus, Juglans, 

Fraxinus, Populus, Salix, and Celtis, as well as thermophytes taxa, such as 

Viburnum, Sambucus ebulus, Buxus, Myrtus, Pistacia, Phillyrea, Rhnamnus, 

and Cistus (Fig.. 11). The xerophytic component is mainly represented by 

Artemisia, Poaceae, Amaranthaceae, Asteraceae, and Lamiaceae(Fig. 11; 

Supplementary Fig. 3). Increments of xerophytes may reflect a general 

opening of the landscape or simply a change in some parts of the mosaic 

of landscapes.
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Although only one coprolite is available (Pes-Cop16), Layer 4c and 

the lower parts of Layer 4b could tentatively correspond to MIS 5e 

(Supplementary Fig. 4), with warm-loving taxa (e.g., Myrtus, Pistacia, 

and Cistus) and absence of Fagus. Rare or sporadic occurrences of beech 

pollen are typical of Eemian sites in Europe (Magri et al., 2006). The mid 

Layer 4b (samples Pes-Sed22 and Pes-Sed23) would correspond to MIS 

5d, with a notable increase in steppe, indicated by high values of 

Amaranthaceae (Supplementary Fig. 4). The uppermost part of Layer 4b 

(samples Pes-Sed21 to Pes-Sed19) and the lowermost part of Layer 4a 

(samples Pes-Sed18 and Pes-Sed17) could be associated with the warmer 

climatic conditions of MIS 5c, as shown by the predominance of meso- 

phytes and mediterranean elements (Fig. 11; Supplementary Fig. 4). It 

should be noted the appearance of Carpinus betulus, Fagus, Taxus, Buxus, 

Castanea, and Celtis. The upper part of Layer 4a (samples Pes-Sed16 to 

Pes-Sed13) is difficult to attribute to MIS 5b or MIS 5a based of pollen, 

although according to Blackwell et al. (2018) Layer 4a was deposited 

during MIS 5b. 

The large quantity of artifacts from Layer 4b suggests that human 

groups occupied the site for an extended period of time, while the 

decrease of artifact assemblages from Layers 4a and 3 indicates a suc- 

cession of short-term human occupations. Anthropogenic evidence on 

faunal remains is identified in the form of cut-marks and impact marks, 

being more abundant in Layer 4b (Table 2). However, because of the 

bias caused by a smaller volume and area of excavated sediment than 

Layer 4a, the faunal remains from Layers 4b, and particularly 4c, should 

be interpreted with caution. The abundance of hyaena-associated cop- 

rolites and Crocuta crocuta spelaea bones was somewhat more pro- 

nounced in Layers 4a and 3, indicating more frequent visits than in Layer 

4b. 

The pollen results from Layer 4 of Pešturina are supported by the 

faunal remains. The impressive record of vertebrates includes typical 

avifaunal species of temperate forests (Tetrao tetrix, Scolopax rusticola, 

Aegolius funereus, Sitta europaea, Fringilla coelebs, Garrulus glandarius), 

steppe environments (Perdix perdix, Coturnix coturnix, Crex crex, Otis 

tarda/Tetrax tetrax) and warm habitats (Petronia petronia, Ptyonoprogne 

rupestris) (Boev and Milosević, 2020), as well as herpetofauna from 

multiple biotopes with relatively humid conditions (Jovanović et al., 

2020), including wet grassland, shrubland, woodland, and rocky areas 

with water points. The smalli mammal assemblage includes typical 

woodland, moist meadows, xero-mesophilous, montane and petrophi- 

lous species, with a very limited presence of steppe and semi-arid species 

(Jovanović et al., 2020). The presence of Testudo hermanni, which 

preferably inhabited open and semi-open areas of Mediterranean type, is 

also noteworthy. 

Among the large mammals, Equus ferus germanicus, Equus hydrunti- 

nus, Cervus elaphus, and Crocuta crocuta spelaea are the most common 

species identified, together with minor occurrences of Dama dama, Sus 

scrofa, Capreolus capreolus, Rupicapra rupicapra, Bison priscus, Capra ibex, 

Megaloceros giganteus, Lepus europaeus, Canis lupus, Vulpes vulpes, Ursus 

spelaeus, Ursus arctos, Panthera spelaea, Panthera pardus, Coelodonta 

antiquitatis, Mammuthus sp., Castor fiber, and Hystrix vinogradovi 

(Milošević, 2016, 2020; Majkić et al., 2018; Dimitrijević, 2021). The 

presence of horse and bison herds suggests the existence of open 

woodlands near the cave; red deer and roe deer would dwell in 

temperate forests, while ibex and chamois would inhabit rocky cliffs. 

Mihailović and Milosevic (2012) point out that the high frequencies of 

Equus ferus germanicus and Equus hydruntinus in the bottom of Layer 4 (4c 

and lower part of 4b) could indicate a warmer climate than the following 

Layers 3 and 2, as also suggested by a larger presence of thermophilic 

and forest faunal species (Mihailović et al., 2022a). Layer 4 shows the 

highest number of potential woodland inhabitants from Pešturina, in 

agreement with the pollen record. The occurrence of typical steppe 

fauna in the upper part of Layer 4 suggests a cold period of the final MIS 

5 or the early MIS 4 (Mihailović et al., 2022a), as also reflected by an 

increase of steppe taxa in the pollen record of the coprolites from the 

upper part of Layer 4 (Figs. 9 and 10). 
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The pollen record of Layer 3 may reflect one or more episodes of MIS 

4-3 (Alex and Boaretto, 2014; Blackwell et al., 2014; Alex et al., 2019; 

Mihailović et al.. 2022a). A diverse landscape can be inferred, with 

Poaceae-Artemisia steppes, Quercus-Poaceae parklands/open wood- 

lands, shrubby grasslands with patches of conifers and mesophytes, and 

heliophytic shrublands (Fig.. 1 1; Supplementary Figs 2 and 3). Interest- 

ingly, the pollen spectra of coprolites and sediment shows a considerable 

consistency, with all ecological groups and the main pollen contributors 

presenting similar percentages in both types of samples (Fig. 11; Sup- 

plementary Fig. 3). Pollen assemblages display a general landscape 

stability with semi-open woodland, showing abundant Poaceae, Arte- 

misia, deciduous Quercus, Asteroideae, Amaranthaceae, Genisteae, 

Lamiaceae, Juniperus, Pinus, and Tilia (Fig.. | |) and occurrence of Acer, 

Betula, Carpinus betulus, Castanea, Corylus, Fraxinus, Ulmus/Zelkova, 

Ericaceae, Cistus, Caryophyllaceae, Centaurea, Apiaceae, Plantago, Dip- 

sacaceae, Epilobium, Liliaceae, Rubiaceae, and Cyperaceae (Fig. 11). 

Although the number of mesophytes and thermophytes taxa is still well 

represented, the loss of some taxa present in Layer 4 (4a, 4b and 4c) 

marks the beginning of Layer 3, including Viburnum, Sambucus ebulus, 

Myrtus, Pistacia, Phillyrea, Ligustrum, Rhamnus, Daphne, Crataegus, 

Anthyllis, Lotus, Vicia, Euphorbiaceae, Iridaceae, Malvaceae, Paronychia, 

Thalictrum and Saxifraga (Fig.. | \; Supplementary Fig. 2). In addition, it 

should be noted the appearance of exclusive taxa for Layer 3, such as 

Cedrus, Limonium, and Linum. Cedrus (<2%) is probably of distant origin, 

being currently present in Anatolia. 

The mammal fauna indicates drier and harsher climates in Layer 3 

than in previous Layer 4 (Milosević, 2016, 2020; Majkić et al., 2018), as 

indicated by abundant fossils of horse (Equus ferus germanicus and Equus 

hydruntinus), bison (Bison priscus), and red deer (Cervus elaphus), 

matching the pollen record that shows dominance of steppes and loss in 

the diversity of woody elements. The most common carnivore is spotted 

hyaena (Crocuta crocuta spelaea), which could accumulate an important 

part of the recovered fauna record in Layer 3 (Table 2). The herpeto- 

faunal taxa and the small mammals suggest that climate was probably 

drier (Jovanović et al., 2020), while the Taxonomic Habitat Index (THI) 

reflects presence of steppe with deciduous trees. Based on the range of 

habitats that extant species occupy, the THI is a cumulative index that 

assigns a score (Andrews, 1990). The purpose of this method is to 

evaluate habitat preferences, which accounts for the fact that most 

mammal species live in multiple biotopes (Evans et al., 1981). Thus, the 

bioclimatic analysis provides the permanence of relatively humid en- 

vironments but drier than Layer 4 (Jovanović et al., 2020). 

The pollen results of Layer 2 are defined exclusively by the sediment 

samples. The available dates estimate a chronology around 30 ka cal BP, 

corresponding to the end of the MIS 3 (Alex and Boaretto, 2014; Alex 

et al.. 2019). Overall, there was a greater openness of the landscapes 

with an increase in steppes, mainly formed by xerophytic elements such 

as Artemisia, Poaceae, Amaranthaceae, Lamiaceae, and Asphodelus 

(Fig. 11). Nevertheless, a wide diversity of secondary landscapes in the 

vicinity of the site persisted, with Quercus-Poaceae open woodlands, oak 

open woodlands, shrubby grasslands with conifers, mesophytes patches 

and heliophytic shrublands (Fig. 11; Supplementary Fig. 3). Several 

woody taxa persisted, such as Pinus, Juniperus, deciduous Quercus, Acer, 

Alnus, Betula, Carpinus betulus, Corylus, Tilia, Ulmus/Zelkova, Buxus, 

Genisteae, and Cistus (Fig. 11). However, the overall floristic diversity 

decreased, mainly due to the desappearance of several mesophyte and 

thermophyte taxa, including Taxus, Carpinus orientalis/Ostrya, Castanea, 

Fagus, Juglans, Fraxinus, Populus, Salix, Celtis, Sambucus nigra, Ilex, Olea, 

Ericaceae, Ribes, Rosaceae undiff., Armeria, Cannabaceae, Geraniaceae, 

Ramonda, Liliaceae, Androsace, Primula, Primulaceae undiff., Scrophu- 

lariaceae, Urticaceae, Verbascum, Typha, Ranunculaceae, and Cyper- 

aceae (Fig. 11; Supplementary Fig. 2). 

In Pešturina, Layer 2 contains abundant bones of horse (Equus ferus 

germanicus and Equus hydruntinus), bison (Bison priscus), and ibex (Capra 

ibex), while wolf (Canis lupus) dominates the carnivores (Milosević, 

2016, 2020; Majkić et al., 2018; Dimitrijević, 2021). Through the
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analysis of cut marks and impact marks (Table 2), it was possible to 

identify the anthropogenic use of the animals composing the assem- 

blage. The abundance of artifacts from Layer 2 indicates a short-term 

occupation. Thus, part of the remains recovered could have been 

deposited by animals, as indicated by the analysis of gnaw and digestion 

marks (Table 2). 

Herpetofauna and small mammals suggest a variety of different 

habitats with the predominance of woodland, moist meadows, xero- 

mesophilous, steppe, and semi-arid environments (Jovanović et al., 

2020). The bioclimatic analysis offers a more humid climate compared 

to caves from Central Europe, although confirming substantial cold 

values (Jovanović et al., 2020). This is clear from the pollen record of 

Pešturina, where mesophytes taxa, which need some wet conditions, 

survived within the steppe and parkland formations. 

In general, the pollen spectra of coprolites and sediment display an 

increasing frequency of xerophytes from the lower levels of Layer 4 (4c) 

to the upper levels of Layer 2, with the exception of the sediment sam- 

ples from Layer 4a (Fig. 11; Supplementary Fig. 3). This trend can be 

observed mainly in the total sums of Poaceae and Artemisia, especially in 

Layers 3 and 2 (Supplementary Fig. 5). In parallel, there is a decrease in 

the frequencies of Pinus, deciduous Quercus and other Mediterranean 

woody taxa. The sediment samples from Layer 4a record the highest 

percentages of AP in the sequence and indicate the period with the 

optimum conditions for the development of deciduous Quercus, Tilia, 

mesophytes and Mediterranean woody taxa (Fig. 11; Supplementary 

Fig. 3). 

The number of palynological types is greater in sediments than in 

coprolites, as sediments reflect a larger spatial and temporal window of 

pollen deposition than do coprolites. Thereby, 28 exclusive taxa have 

been found in sediment samples that have not been collected in copro- 

lites (Fig. 11), including Abies, Taxus, Celtis, Viburnum, Sambucus ebulus, 

Phillyrea, Ligustrum, Rhamnus, Daphne, Ribes, Anthyllis, Lotus, Vicia, 

Brassicaceae, Epilobium, Euphorbiaceae, Geraniaceae, Helianthemum, 

Knautia, Asphodelus, Iridaceae, Linum, Malvaceae, Paronychia, Thalic- 

trum, Saxifraga, Scrophulariaceae, and Verbascum. Likewise, 3 unique 

taxa have been identified in the coprolite samples (Limonium, Androsace, 

and Primulaceae undiff.) (Fig. 11). 

According to Carrion (2002), occurrences of minor pollen taxa in 

coprolite spectra, possibly with a limited poor dispersal, are crucial for 

characterizing local floristic assemblages and recording plant taxa that 

are rarely listed in non-archaeological contexts (Carrion et al., 2018). 

Considering their current distribution, it is worth mentioning the 

possible local existence of some endemic Balkan species (Sarić, 1992; 

Niketić and Tomovič, 2008; Ranđelović et al., 2008; Petrova and Vla- 

dimirov, 2010) in Pešturina Cave at least during the Late Pleistocene. 

The occurrence of Ribes, Daphne, Primula, Ramonda, Androsace, Vicia, 

and Knautia is especially interesting since these genera/species, that 

may include endemics, were found during MIS 4-3 when climatic con- 

ditions were severe (Fig. 11). In addition, during the same time-period 

(Layers 2 and 3), a number of families were recorded that may 

embrace endemic species, such as Caryophyllaceae, Apiaceae, Aster- 

aceae, Campanulaceae, Boraginaceae, Brassicaceae, Dipsacaceae, Eri- 

caceae, Rosaceae, Genisteae, Scrophulariaceae, Poaceae, Primulaceae, 

Ranunculaceae, and Rubiaceae. Other pollen types (Convolvulus, Epi- 

lobium, Verbascum, Linum, Ligustrum, Paronychia, Thalictrum, Saxifraga, 

Limonium, Geraniaceae, Euphorbiaceae, and Malvaceae) may be asso- 

ciated to local floras in the Balkan Peninsula (Polunin, 1980; Bohn and 

Neuhausl, 2004), although they do not include endemic species of the 

central Balkans. On the whole, these taxa show a greater expansion 

during the glacial stages of the Late Pleistocene than at present, which 

reinforces their naturalness in the Balkans that acted as a refugium for 

endemic taxa, and confirms the biogeographic importance of this region 

in maintaining the phytodiversity of the plant communities (Bennett 

et al., 1991; Tzedakis, 1994, 1999; Willis, 1994; Okuda et al., 2001; 

Magri, 2010; Pross et al., 2015; Sadori et al., 2016; Magri et al., 2017). 

14 

Quaternary Science Reviews 330 (2024) 108600 

9. Palaeoenvironment during MIS 5-MIS 3 in the Central Balkans 

Pešturina and other sites from the Balkan Peninsula are relevant to 

the issue of glacial refugia for temperate trees during the Late Pleisto- 

cene (Fig. 12). These sites contain deposits sometimes extending back to 

the Middle and Early Pleistocene, althtough many of them only cover the 

last stages of the last glacial period in MIS 2 (Fig. 12). In general, and 

also at Pešturina, the predominant xerophyte elements during the 

coldest and most arid phases of the glacial periods consisted of Artemisia 

and Amaranthaceae (Huntley and Birks, 1983; van Zeist and Bottema, 

1991; Willis, 1994). In contrast to others sites from central and northern 

Europe, these sequences show continuous presence of both deciduous 

and coniferous tree taxa during the Late Pleistocene (Willis, 1994). 

The Tenaghi Philippon sequence, in the Mediterranean Sea (NE 

Greece), has provided one of the most complete vegetation records of 

the European Quaternary (Wijmstra, 1969; van der Hammen et al., 

1971; Greig and Turner, 1974; Wijmstra and Smit, 1976; Tzedakis et al., 

2003; Fletcher et al., 20153), spanning the last 1.35 Ma (Tzedakis et al., 

2006; Pross et al., 2015). In the last interglacial complex (MIS 5e-5a), 

the pollen data show a pattern of alternating development of forest, 

mainly in MIS 5e, 5c and 5a, and xerophytic steppe vegetation, in MIS 5d 

and 5b (Supplementary Fig. 4). The pollen record from Pešturina (Layers 

4a, 4b and 4c) shows similar alternating landscapes, although MIS 5b 

and MIS 5a have not been clearly distinguished (Figs. 5 and 8). Domi- 

nant forest taxa at Tenaghi Philippon are Quercus and Pinus, while 

abundant deciduous Quercus, Tilia, and Poaceae are found at Pešturina. 

Mediterranean elements, such as Pistacia, Olea, Phillyrea, and Fraxinus 

ornus, are recorded at Tenaghi Philippon during the Eemian interglacial 

(Milner et al., 2016), as well as at Pešturina (Layer 4c), with the 

continued presence of Olea, Myrtus, Pistacia and Cistus. 

In the Ioannina basin, north-west Greece, extending back ca. 430 ka, 

the vegetation of the last interglacial complex mainly consists of de- 

ciduous Quercus, Carpinus betulus, Pinus, Ulmus/Zelkova, Abies, and 

Fagus, with marked peaks of Artemisia and Poaceae in MIS 5d (Bottema, 

1974; Tzedakis, 1993, 2000; Tzedakis et al., 2003; Lawson et al., 2004). 

These data show a general correspondence with the dynamics of MIS 5 in 

Pešturina, where Carpinus betulus and Fagus are also found during MIS 

5c, although in low frequencies (Fig. 5). 

The vegetation history of Lake Kopais, south-east Greece, extends 

from the Holocene back to MIS 11 (Tzedakis, 1999; Okuda et al., 2001). 

A remarkable study of the last interglacial shows substantial coincidence 

with the MIS 5e-5a phases at Pešturina (Supplementary Fig. 4). 

The Lake Prespa record, reaching back 92 ka BP, indicates a climate 

variability in the south-western part of the Balkans (Panagiotopoulos 

et al., 2014). Three major phases of vegetation development are 

distinguished: the forested phases of MIS 5 dominated by deciduous 

trees, the pine-dominated open landscapes of MIS 4, and the open 

landscapes of MIS 3 with significant presence of temperate trees. The 

pollen record from Pešturina reveals a composition of the landscapes 

that is comparable to that of Lake Prespa, with some differences in the 

dynamics of the principal taxa, including Quercus, Pinus, Artemisia, 

Amaranthaceae, and Poaceae (Supplementary Fig. 4). 

In Lake Ohrid, where a sequence spanning 1.36 Ma was studied 

(Donders et al., 2021), a detailed pollen record from approximately 160 

to 70 ka (MIS 6 to MIS 4) shows high percentages of Pinus, Quercus, 

Abies, Betula, Carpinus betulus, Corylus, Tilia and Ulmus, as well as med- 

iterranean taxa such as Cistus, Fraxinus ornus, Olea, Phillyrea and Pistacia 

for the last interglacial complex (Sinopoli et al., 2019). There isa general 

correspondence with Pešturina (Supplementary Fig. 4). 

As regards MIS 4 and MIS 3, it is not easy to establish a well-defined 

correlation between the Pešturina record and the other Balkan se- 

quences, although there is a fairly high degree of coincidence in the loss 

of forests, characterized by a decline of deciduous Quercus and other 

mesophytes, and a spread of steppes with Artemisia, Poaceae, and 

Amaranthaceae (Supplementary Fig. 4). In addition to the above- 

mentioned sites, the record of Xinias in Greece, spanning approx. the
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Mediterranean 

Sea 

200 km 

Fig. 12. Late Pleistocene pollen sites from the Balkan Peninsula mentioned in the text: 1. Pešturina (330 m; MIS 5e – end of MIS 3); 2. Tenaghi Philippon (42 m; 

1350—0 ka; Milner et al., 2013, 2016; Pross et al., 2015); 3. Kopais (100 m; 500—2 ka; Okuda et al., 2021); 4. Straldzha (128 m; ~37.5-0 ka; Connor et al., 2013); 5. 

Magura (375 m; ~50-36 ka; Ivanova et al., 2015); 6. Ioannina (473 m; 4300 ka; Tzedakis et al., 2003; Lawson et al., 2004); 7. Xinias (500 m; ~50–0 ka; Bottema, 

1979; Digerfeldt et al., 2000); 8. Limni Zazari (606 m; 20–0 ka; Gassner et al., 2019); 9. Ohrid (693 m; 1360–0 ka; Donders et al., 2021); 10. Crvena Stijena (700 m; 

MIS 6 – MIS 1; Whallon, 2017); 11. Prespa (849 m; 920 ka; Panagiotopoulos et al., 2014); 12. Smolucka (945 m; MIS 5 – MIS 3; Jovanović et al., 2022); 13. Kupena 

(1356 m; 30—0 ka; Bozilova et al., 1989; Huttunen et al., 1992; Tonkov et al., 2014); 14. Trilistnika (2216 m; 20–1 ka; Tonkov et al., 2008). 

last 50 ka (Bottema, 1979; Digerfeldt et al., 2000), has certain similar- 

ities with Layers 3 and 2 of Pešturina, with relatively high percentages 

(30–60%) of arboreal taxa, including deciduous Quercus, Pinus, Ulmus, 

Corylus, Juniperus, Abies, Fagus, Carpinus betulus, and Carpinus ori- 

entalis/Ostrya. In addition, as in Pešturina, the herbaceous vegetation is 

represented by remarkable values of Poaceae, Artemisia, and Amar- 

anthaceae, and to a lesser extent of Asteroideae, Cichorioideae, 

Centaurea, and Plantago (Bottema, 1979). In Straldzha Mire (Bulgaria), 

spanning approx. the last ~ 37. 5 ka (Connor et al., 2013), the pollen 

data corresponding to MIS 3 shows persistence of cold steppe vegetation, 

with abundant Artemisia and Poaceae, consistent with Pešturina (Sup- 

plementary Fig. 4). 

Layers dated to MIS 2 are missing from Pešturina Cave, but infor- 

mation about the vegetation of the Balkan Peninsula during the last 

glacial maximum can be obtained from a number of pollen records 

(Fig. 12), including Limni Zazari (Gassner et al., 2019), Kupena (Bozi- 

lova et al., 1989; Huttunen et al., 1992; Tonkov et al., 2014), Trilistnika 

(Tonkov et al., 2008), Tenaghi Philippon (Milner et al.. 2013, 2016; 

Pross et al., 2015), Kopais (Okuda et al., 2021), Straldzha (Connor et al., 

2013), Ioannina (Tzedakis et al., 2003; Lawson et al., 2004), Xinias 

(Bottema, 1979; Digerfeldt et al., 2000), Ohrid (Donders et al., 2021), 

and Prespa (Aufgebauer et al., 2012; Panagiotopoulos et al., 2014). 

These sequences collect evidence of woody taxa, which reinforces the 

refuge status of the Balkan Peninsula for mesophytes and Mediterranean 

elements, including Pinus, Juniperus, Abies, Picea, Quercus, Acer, Alnus, 

Betula, Carpinus betulus, Carpinus orientalis/Ostrya, Castanea, Corylus, 

Fagus, Juglans, Tilia, Fraxinus, Ulmus, Salix, Olea, Phillyrea, and Pistacia 

(Supplementary Fig. 4). 

Bennett et al. (1991) suggest that low but persistent pollen per- 

centages from thermophytes and mesophytes tree taxa during the glacial 

period are likely to have originated from local refugial populations. 

Additionally, Willis (1002) points out that these populations were 

probably in microenvironmentally favorable areas, located especially in 

the mountains. The continuous permanence throughout the Pešturina 

sequence, and particularly in the final phases of MIS 3, of a diverse 
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assemblage of woody taxa (Pinus, Juniperus, deciduous Quercus, Acer, 

Alnus, Betula, Carpinus betulus, Corylus, Tilia, Ulmus/Zelkova, Buxus, 

Genisteae, and Cistus), confirms that the Central Balkans were a refuge 

area for the mesothermophilic component. 

The high frequencies of Tilia throughout the Pešturina pollen 

sequence are remarkable, especially because lime pollen is poorly 

dispersed (mainly entomophily) and consequently is underrepresented 

(Andersen, 1970; Srodon, 1991; Kupryjanowicz et al., 2004). Lime is a 

mesophilous taxon adapted to moist conditions under warm temperate 

climates, mainly in plains and on the lower slopes of hills and mountains 

(De Benedetti et al., 2022). Three species of Tilia occur today in the 

Balkan Peninsula, whose pollen cannot be easily distinguished (Binka 

et al., 2006): Tilia cordata Miller (currently widespread in Western 

Europe; Faton et al., 2016), T. tomentosa Moench (extending in SE 

Europe; Atalay and Efe, 2010), and T. phatyphyllos Scopoli (reaching the 

westernmost parts of the East European Plain; Pigott, 2020). While Late 

Pleistocene pollen records of Tilia from the Balkan Peninsula are scarce 

and generally discontinuous (Bottema, 1974; Tzedakis, 1993; Willis, 

1994; Milner et al., 2013, 2016; Pross et al., 2015; Sinopoli et al., 2019; 

De Benedetti et al., 2022; Lang et al., 2023), Pešturina Cave stands out as 

the site with the highest presence of Tilia in the Central Balkan Penin- 

sula, where valley gorges could have been a glacial refuge for lime trees 

(De Benedetti et al.., 2022), as well as a biodiversity hotspot (Carrion 

et al., 2011). 

The occurrence of pollen of Zelkova at Pešturina during MIS 5 is 

probable but, due to the poor conservation state of pollen grains, it was 

not distinguished from Ulmus (Figs. 5 and 8). Most Pleistocene palyno- 

logical records from the Balkan Peninsula fail to show any separation 

between Zelkova and Ulmus, which makes it difficult to reconstruct its 

history (Magri et al., 2017). Nevertheless, evidence for Zelkova during 

the Eemian interglacial at Ioannina (Tzedakis et al., 2003) and until 77 

ka BP at Lake Ohrid (Donders et al., 2021) supports the finding at 

Pešturina and the existence of a refuge in the Central Balkans during the 

Late Pleistocene (Lang et al.., 2023).
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10. Palaeoecological implications for survival of human 

populations in the Central Balkans 

Kozlowski (1998) highlights the importance of the Balkan Peninsula 

as a pivotal area for the dispersal of hominids, as hominin occupations 

may have been preferentially distributed across regions with high levels 

of topography and orography variability, favouring the maintenance or 

the movement of Neanderthals and Anatomically Modern Human pop- 

ulations  (Conard, 2002; Van Andel et al., 2003; Mellars, 2011; 

Mihailović et al., 2011; Marin-Arroyo and Mihailović, 2017; Mihailović, 

2020; Carvalho and Bicho, 2021; Karavanić et al., 2022; Marin-Arroyo 

et al., 2023). 

Pešturina Cave represents the first systematically excavated site 

dated from MIS 5e to MIS 3 in the Central Balkan Range, and the only 

site within the Balkan interior where Neanderthal fossil remains have 

been discovered. There are some relevant hominid sites of the Middle 

Pleistocene in the Balkan Peninsula (Mihailović et al., 2022a), such as 

Mala Balanica, dated to >400 ka (Roksandic et al., 2011; Rink et al., 

2013; Skinner et al., 2016; Mihailović et al., 2022b) and Velika Balanica, 

dated to MIS 9-7 (Mihailović and Bogićević, 2016; Mihailović et al., 

2022b; Roksandic et al., 2022). Other significant Palaeolithic sites, 

chronologically situated in the Middle to Late Pleistocene are: Kozarnika 

Cave (Bulgaria; MIS 6; Guadelli et al., 2005; Tillier et al., 2017), Zobište 

(northern Bosnia; MIS 5a to MIS 4; Montet-White et al., 1986; Baumler, 

1988), Šalitrena Pećina (Serbia; MIS 4 to MIS 3; Marin-Arroyo and 

Mihailović, 2017; Marin-Arroyo et al., 2023), Tabula Traiana (Serbia; 

MIS 3; Borić et al., 2022), Baranica (Serbia; MIS 3; Mihailović et al., 

2011), Hadži Prodanova (Serbia; MIS 3 to MIS 2; Milosević, 2016; Alex. 

et al., 2019), Dubočka-Kozja caves (Serbia; MIS 3 to MIS 2; Borić et al., 

2022), and Theopetra (Greece; MIS 3 to MIS 1; Karkanas et al., 2015). In 

the site of Crvena Stijena (Montenegro; MIS 6 to MIS 1; Whallon, 2017), 

charcoal analysis from layer XXIV (toward the end of MIS 5a) has 

allowed the identification of at least twelve woody taxa (Pinus, Abies, 

Juniperus, Buxus, Cornus, Prunus, Sambucus, Fagus, Fraxinus, Juglans, 

Acer, and Tilia) used by the rock shelter inhabitants. These taxa are 

consistent with Layer 4a in Pešturina (MIS 5b-5a) (Fig. 11; Supple- 

mentary Fig. 3). In the Magura Cave, north-west Bulgaria, extending 

back ca. 50-36 ka, the pollen composition of the coprolites mainly 

consists of Pinus, Poaceae, and Artemisia (Ivanova et al., 2015), which 

shows a general correspondence with MIS 3 in Pešturina Cave. In 

Smolućka cave (Serbia), dated from MIS 5 to MIS 3 (Jovanović et al., 

2022), the application of a bioclimatic analysis and the Taxonomic 

Habitat Index to the Late Pleistocene rodent assemblages indicates 

climate conditions favorable for a large species diversity during MIS 5, 

not too severe during MIS 4, and temperate-humid during MIS 3. The 

bioclimatic results obtained for the same period at Pešturina show 

similar alternating environments (Jovanović et al., 2020), consistent 

with the pollen record. 

From a palaeoecological perspective, the Pešturina site appears as a 

unique palaeofloristic record in the Balkans, in relation to the Nean- 

derthal palaeoenvironment, highlighted by a permanent open forested 

habitat, with high plant diversity, typical of the glacial refugia in the 

southern European regions. Similar situations were found in the Iberian 

Peninsula (Carrićdn et al., 1999b, 2003a, 2008, 2018, 2022b; 

Gonzalez-Samperiz et al., 2010; Manzano et al., 2017; Ochando et al., 

2019, 2020b, 2020c, 2020d, 2022a; Verdud et al., 2020; Amoros et al., 

2021), in the Italian Peninsula (Follieri et al., 1998; Magri, 1999; Magri 

and Sadori, 1999; Giardini, 2007; Pini et al., 2010), and the Lesvos Is- 

land (Margari et al., 2009). Finlayson et al. (2011) found a conspicuous 

association between Homo and ecologically rich, semiopen woodlands in 

ecotonal and mosaic landscapes. This wide diversity of habitats, as in the 

southern Iberian Peninsula (Carrion et al., 2008, 2018; Finlayson and 

Carrion, 2007; Ochando et al., 2020b) could have favored a propitious 

environment for a long permanence of Neanderthals and the early 

Anatomically Modern Human populations (Carrion et al.. 2011). Thus, 

the palynological record of Pešturina Cave emerges as an optimal 
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mesothermic refuge. 

According to Vidal-Cordasco et al. (2022, 2023), Neanderthals were 

influenced by the abundance of herbivores, which were an important 

part of their daily subsistence. The search for ungulates caused the Ne- 

anderthals to follow them, which determined environmental conditions 

suitable for survival by providing opportunities for hunting, collecting, 

and sheltering (Finlayson and Carri0n, 2007; Carridn and Walker, 2019; 

Stewart et al., 2019). This is confirmed by the palaeoecological in- 

dicators of wetlands in Pešturina, which might have developed around 

the cave and nearby riverine ecosystems, dominated by Alnus, Fraxinus, 

Populus, Salix, Ulmus, and Cyperaceae, among others. The presence of 

riparian species near the site is in itself an evidence for fresh water 

availibility both for human populations and hunted animals that fre- 

quented the region (Ochando et al., 2022a, 2022b, 2022c). 

The Neanderthals and modern human groups that inhabited 

Pešturina were undoubtedly expert of open woodland ecosystems, along 

with wooded ravines, in areas that combined the middle mountain and 

the plain towards the valley, as demonstrated by the stable isotope 

signatures of the macromammals from Šalitrena Pećina (Marin-Arroyo 

et al., 2023). They had a deep knowledge of their environment (Nabais 

and Zilhao, 2019; Spikins et al., 2019; Stewart et al., 2019), where 

diverse and rich conditions allowed them to develop different subsis- 

tence strategies (Spagnolo et al., 2019), and to obtain greater adapt- 

ability by means of a tremendous structural complexity (Carrion et al., 

2011). Although hyaenas were likely the main agents of bone accumu- 

lation to the site, especially in Layers 4 and 3 (Milosević, 2016), large 

mammmal remains, like woolly rhinoceros and mammoth, together 

with lithic tools show that some remains were brought to the site by 

humans (Mihailović and Milosević, 2012). Thus, these human groups, 

mainly the Neanderthal populations from Layer 4 (MIS 5), processed and 

consumed a wide diversity of animal species, including Equus ferus ger- 

manicus, Cervus elaphus, Dama dama, Bison priscus, Sus scrofa, Capreolus 

capreolus, and Ursus spelaeus. Through the analysis of cut marks, dis- 

memberment, filleting, long/extensive bone breakage and bones with 

traces of burning, it was possible to identify anthropogenic activities 

composing the assemblage (Camaros et al., 2013; Milosević, 2016, 2020; 

Majkić et al., 2018; Mihailović et al., 2022a). Likewise, the use of plant 

materials for food and technological items cannot be disregarded (Ward 

et al., 2012a, 2012b; Hardy, 2018; Zilhao et al., 2020), especially since 

Fellows Yates et al. (2021) demonstrated the presence of bacteria 

involved in starch digestion within the oral microbiome of the Pes-3 

Neanderthal from Layer 4 in Pešturina. Besides, a number of recent in- 

vestigations highlight how relevant plants were for Neanderthal diet 

(Barton et al., 1999; Carri0n et al., 2008, 2018; Hardy et al., 2012; 

Ochando et al., 2019, 2020a, 2020b, 2020c, 2020d). Thereby, we can 

add to the human diet the possibility of a broad spectrum of edible plants 

that likely grew in the proximity of Pešturina, such as chestnut (Castanea 

sativa), hazelnut (Corylus avellana), walnut (Juglans regia), Mediterra- 

nean hackberry (Celtis australis), elderberry (Sambucus nigra), olive (Olea 

europaea), and probably wild Rosaceae. 

The new palynological study of Pešturina cave reinforces our un- 

derstanding of the adaptation and persistence of Neanderthals and early 

Anatomically Modern Humans in mosaic environments within Medi- 

terranean ecotones. The Mousterian-Gravettian pollen record of 

Pešturina depicts a diverse vegetation landscape, which may well 

represent the Central Balkan Range for this period (MIS 5e-MIS 3). Thus, 

the pollen results presented here provide new insights into the bioge- 

ography of the Mousterian-Gravettian populations that used the present- 

day thermo-meso-mediterranean and continental European belts as 

corridors. 
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