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Abstract: Most high-mountain regions worldwide are susceptible to snow avalanches during the
winter or all year round. In this study, a Universal Snow Avalanche Modeling Index is developed,
suitable for determining avalanche hazard in mountain regions. The first step in the research is the
collection of data in the field and their processing in geographic information systems and remote
sensing. In the period 2023-2024, avalanches were mapped in the field, and later, avalanches as points
in geographic information systems (GIS) were overlapped with the dominant natural conditions in
the study area. The second step involves determining the main criteria (snow cover, terrain slope, and
land use) and evaluating the values to obtain the Snow Avalanche Formation Index (SAFI). Thresholds
obtained through field research and the formation of avalanche inventory were used to develop
the SAFI index. The index is applied with the aim of identifying locations susceptible to avalanche
formation (source areas). The values used for the calculation include Normalized Difference Snow
Index (NDSI > 0.6), terrain slope (20-60°) and land use (pastures, meadows). The third step presents
the analysis of SAFI locations with meteorological conditions (winter precipitation and winter air
temperature). The fourth step is the modeling of the propagation (simulation) of other parts of the
snow avalanche in the Flow-R software 2.0. The results show that 282.9 km? of the study area (Sar
Mountains, Serbia) is susceptible to snow avalanches, with the thickness of the potentially triggered
layer being 50 cm. With a 5 m thick snowpack, 299.9 km? would be susceptible. The validation using
the ROC-AUC method confirms a very high predictive power (0.94). The SAFI-Flow-R approach
offers snow avalanche modeling for which no avalanche inventory is available, representing an
advance for all mountain areas where historical data do not exist. The results of the study can
be used for land use planning, zoning vulnerable areas, and adopting adequate environmental
protection measures.

Keywords: snow avalanche; susceptibility; GIS; propagation modeling; natural hazard; remote
sensing; Sar Mountains; environment; multi-criteria decision-making; field research
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1. Introduction

Snow avalanches are one of the most frequent natural disasters in high mountain
regions [1-3]. They are defined as a phenomenon caused by the release, transition, and
accumulation of snow material, often containing rocks, soil, and plants. It is a complex
process resulting from the interaction of geomorphological conditions, snowpack, and other
meteorological factors [4]. Medium or large-scale snow avalanches threaten human lives,
housing, communication and transportation, existing ecosystems, and landscapes [5-8].
According to the European Avalanche Warning Services [EAWS], over 2200 people have
died in Europe due to snow avalanches in the last 20 years [9]. This figure is undoubtedly
higher as there is no data on the area of southeastern and eastern Europe. In order to
reduce the damage caused by snow avalanches, the first step is to create maps of the spatial
distribution of avalanches and an inventory of snow avalanches [10]. In addition to Europe,
snow avalanches are also being actively studied in other regions and countries: China,
India, Afghanistan, Pakistan, Tajikistan, Canada, USA etc. [2,7,10-13]. In Serbia, research
on snow avalanches and their distribution is a relatively new phenomenon. Although
many ski resorts (Kopaonik, Tornik, Brezovica, Stara Planina) host hundreds of thousands
of tourists anually, there is no cartographic data on the avalanche hazard. Some research
has been done on the influence of geological surroundings on earthquake-induced snow
avalanche-prone areas in the Kopaonik region [14].

The Sar Mountains are the most susceptible mountain massif when it comes to snow
avalanches, and therefore the number of studies dealing with this hazard has been increas-
ing in recent years [15-17].

Predicting the spatial distribution of snow avalanches is a complex process requir-
ing field research and cabinet work. Field research involves the analysis of snow layers
within the snowpack, snow stability tests, manual shear tests, determination of types of
snow avalanches, and analysis of geomorphological, meteorological, and biogeographical
conditions [18]. As snow layers vary according to snow depth, temperature, and water
quantity, field research is necessary to identify of persistent weak layers, which are the
main causes of snow avalanche [13]. Persistent weak layers can be numerous, depend-
ing on the size of the snow grains (surface hoar, depth hoar, faceted crystals). When
a snow avalanche is identified in a certain area, it is preferable to determine its type.
Slab avalanches cause the most environmental problems, and often, the trigger of such
avalanches is human [7,19,20]. In addition to slab avalanches, the following avalanche
types can be distinguished: loose snow avalanches, powder avalanches, ice avalanches,
slush avalanches, and gliding avalanches [13]. The emergence of all these types depends
on land use, microrelief (terrain’s slope, roughness), and microclimate conditions in a
particular area. Deforestation and climate change significantly influence avalanche flow
modeling, while terrain slope is the most important morphometric parameter [21,22].

Nowadays, modeling assessing susceptibility of territories to various natural hazards and
data visualization are widely made using geographic information systems (GIS) [10,23-27].
With remote sensing and high-resolution data, GIS provides relevant secondary data on
phenomena and processes in remote areas [28,29]. However, the application of snow
avalanche modeling methods depends on the available data.

If there is historical data on the spatial distribution of avalanches, researchers generally
base their studies on statistical methods, machine learning, or numerical modeling. Kumar
et al. (2016) used a fuzzy—frequency ratio model for the region of Himachal Pradesh (Indian
Himalaya) [30]. In the study, 292 locations of snow avalanches were documented and
mapped. Varol (2022) investigated the spatial distribution of avalanches in the Uzungol
area (Turkey) using the frequency ratio model [31]. In the same territory, hybrid and
ensemble machine learning techniques (J48, random tree, random forest) were applied [21].
Bian et al. (2022) integrated statistical models and machine learning (EBF-LR, CF-LR,
EBE-MLP, CE-MLP) for terrain vulnerability assessment in the central Shaluli Mountain
(China) [4]. Choubin et al. (2019) used support vector machine (SVM) and multi-variate
discriminant analysis (MDA) model snow avalanches in the territory of Karaj watershed
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(Iran) [22]. Iban and Bilgilioglu (2023) studied the susceptibility of the province of Sondrio
(Italy) to the occurrence of snow avalanches using tree-based machine learning algorithms
(XGBoost, NGBoost, and LightGBM) [32]. Yariyan et al. (2020) combined two statistical
models (belief function and probability density) and two learning models (multi-layer per-
ceptron and logistic regression) to predict avalanche susceptibility for the Sirvan watershed
area (Iran) [33]. KoSova et al. (2022) applied the two-dimensional numerical simulation
model RAMMS for analyzing the vulnerability of the Kralova Hol'a area in the Low Tatra
Mountains (Slovakia) [34]. Martini et al. (2023) compared 2-D numerical models (RAMMS
and FLO-2D) for the distribution of snow avalanches in the province of Bolzano-Bozen
(Italy) [35].

When there is no data on past avalanches, the authors usually resort to multi-criteria
decision-making (MCDM). Kumar et al. (2018) used the Analytic Hierarchy Process (AHP)
for geospatial modeling of snow avalanches in the Jammu and Kashmir region (India) [36].
Nasery and Kalkan (2021) mapped avalanche susceptibility in Van province (Turkey) using
AHP [20]. This method was also used in northern Pakistan, Medog County (China), and
the Sar Mountains (Serbia) for the prediction of snow avalanches [10,15,37].

This study presents a unique Universal Snow Avalanche Susceptibility Index, which
can be applied to mountain regions worldwide. The innovative approach is based on the
integrated application of GIS, multi-criteria analysis, remote sensing, and propagation
modeling in order to determine the geospatial distribution of snow avalanches as precisely
as possible. The case study is the Sar Mountains, where avalanches have caused great
human and material losses for decades [15].

The primary goal of the research is to identify locations within the study area that are
susceptible to snow avalanches. A secondary goal is to develop a universal index that can
be used in other susceptible mountain regions where there is insufficient data on snow
avalanches. The study provides answers to research questions, such as the study area,
spatiotemporal frame and field research, data availability, methodology innovation, and
the significance of the final results.

The results can be useful for decision-makers and mountain rescue services in land
use planning, avoiding avalanche-prone terrain, and adopting protective measures for
residential buildings and infrastructure located in hazard zones.

2. Materials and Methods
2.1. Study Area

In the southern part of Serbia, on the border with North Macedonia and Albania,
lies the Sar Mountains (Figure 1). The study area covers the planned boundary of the Sar
Mountains National Park, with an area of 970 km?. The point with the lowest altitude
is 387 m, while the highest point, which is also the highest peak in Serbia reaches Velika
Rudoka (2660 m) [16]. The average altitude is 1421 m, and the average slope of the terrain
is 18°.

During the Pleistocene, the Sar Mountains were covered by glacial ice, so that today
there are numerous glacial forms in the relief (cirques, glacial valleys, moraines). Large
amounts of snow are still characteristic of this area. A considerable amount of snow remains
in January and February, when the most snow avalanches form (Figure 2).

Weather conditions are extremely variable during the winter months and locally
isolated. It often happened that at the same time in one part of the Sar Mountains (Brezovica)
a large amount of snow fell, while in another part (Restelica) it was sunny and without
precipitation. Such differences are caused by different climatic influences and numerous
geomorphological “barriers” within the study area. The structure and water saturation
of snow also depend on climatic factors. Due to low temperatures and low relative air
humidity, there is mostly dry snow on the mountains in January and February. With the
spring months and the rise in air temperature, the amount of water in the snow increases
significantly. Regardless of the change in the mechanical properties of the snow, the
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susceptibility of snow avalanches is at a high level in many parts of the Sar Mountains from
January to March.
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Figure 1. Geographical position of the Sar Mountains.

Figure 2. Snow avalanches on the Sar Mountains (photo by Stanigi¢, M., 2023 /24).
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The northern parts of the Sar Mountains are suitable for winter tourism, therefore the
Brezovica ski center was built in the eastern part of the study area, which hosts tens of
thousands of tourists annually [17]. Although there are groomed ski slopes, tourists often
ski off the marked slopes in locations highly prone to avalanches.

During the last 200 years, more than 100 people have lost their lives in the Sar Moun-
tains due to snow avalanches [16]. In addition, the destructive force of snow avalanches
often causes damage to houses, roads, and vegetation (Figure 3). From the fauna and
flora aspect, avalanches significantly endanger animal species (Rupicapra rupicapra, Ursus
arctos, Dinaromys bogdanovi) and high mountain bushy vegetation (Pinus mugo). To
protect the environment, it is necessary to use modern methods to determine the locations
susceptible to snow avalanches.

£ >
R oeve

Figure 3. The impact of snow avalanches on the environment of the Sar Mountains.

2.2. Methodology
2.2.1. Snow Avalanche Formation Index (SAFI)

Multi-criteria decision-making (MCDM) methods are widely used in predicting natu-
ral hazards [38,39]. Snow avalanches represent a complex type of natural hazard that is
affected by different microrelief conditions depending on the anatomy of the avalanche.
Avalanches have a starting, transition zone (track), and a deposition (run-out) zone. In
order to model snow avalanches correctly, it is necessary to pay particular attention on the
potential triggering zones. For this purpose, the snow avalanche formation index (SAFI)
was developed, which analyzes the main natural conditions for avalanche formation:
snowpack, terrain slope, and land use.

Snowpack—in most mountainous regions worldwide, there are no constant mea-
surements or data on the depth of the snow cover. Remote sensing provided a relevant
methods for identifying the snow cover in a given area. In this article, the Normalized
Difference Snow Index (NDSI), derived from satellite images of the Sentinel-2 mission, was
used to assess the presence of snow cover [40]. Data were analyzed for five consecutive
years (January 2020-February 2024) were analyzed, within which ten different scenes were
processed, with a pixel spatial resolution of 10 m [41]. Cloud cover in the analyzed satellite
images is less than 1%. NDSI is calculated by the formula [40]:

Green — SWIR

NDSI= Green + SWIR’ @
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where: Green—green spectral channel; SWIR—short-wave infrared spectral channel.

NDSI values range from —1 to +1. Values greater than 0.4 indicate the presence of snow
cover [40,42]. The maximum NDSI value can be 1, indicating complete snow dominance
and significant depth of snow cover. During the field research on the Sar Mountains in
February 2024, the location that has a value of 0.64 on the NDSI image, the snow thickness
on the ground was 103 cm. On the other hand, in the area where the snow depth of 30 cm
was recorded, its NDSI pixel value was 0.56. These values indicate significant differences at
the local level of snow distribution. Thresholds for NDSI values for the territory of the Sar
Mountains where the avalanches were mapped are above 0.6. Also, by analyzing avalanche
flows in the Rocky Mountains (Utah, USA), it was also observed that the NDSI thresholds
for avalanche formation are above 0.6 [43]. In addition to the mapping, an extended column
test (ECT), a hand shear test, the identification of snow grains, and the measurement of the
snow cover temperature were carried out (Figure 4).

Figure 4. Field research on the Sar Mountains.

The results confirmed the existence of many snow layers in places where the snow
depth exceeded one meter. The snow temperature on the windward sides was significantly
lower (—10.6 °C) compared to the leeward sides (—4.5 °C). Due to the persistent weak
layers, buried surface hoar is very common. The maximum depth of the snow cover in
the ravines below the highest peaks of the Sar Mountains during the winter months is
5-6 m [17]. Field research was carried out in 2023 and 2024 and 53 snow avalanches of
different typologies were mapped.

Field research included hiking below the ridge, analyzing snowpack, and mapping
snow avalanches. The mapping was done through the GIS mobile application QField [44].
Inside the application created a project in which all recorded avalanches were assigned a
geographical position: latitude, longitude, and altitude (Table 1). After that, the data was
exported to QGIS software, where NDSI values and terrain slope were identified for the
digitized points (snow avalanches).

Terrain slope—the most essential geomorphological condition for the occurrence of
snow avalanches [45]. In most cases, the slope of the terrain is the highest during the
formation of the avalanche and decreases with the process of avalanche deceleration and
snow accumulation. According to data and standards of the Utah Avalanche Center, snow
avalanches form on terrain slopes of 20-60° [46]. Data on the slope of the terrain were
obtained through a digital elevation model (DEM) with a spatial resolution of 12.5 m [47].

Land use—a biogeographic factor that affects the transition of avalanche material. Bare
areas (stone fields) and territories with low vegetation (meadows, pastures) represent ideal
locations for the formation of an avalanche. On the other hand, dense forests prevent the
formation of slab avalanches and represent a significant natural barrier during avalanche
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movement [48]. Data on land use were taken from the ESRI geospatial database formed on

Sentinel-2 satellite images with a spatial resolution of 10 m [49].

Table 1. Geospatial data on mapped avalanches.

Avalanche (I?"F;\I/Ih;i;]) Longitude Alz::)lde NDSI Slope (°)  Land Use
1 502066.783 4667123.11 2294 0.73 24.4 Pastures
2 503361.101 4668079.36 2243 0.72 30.5 Pastures
3 504331.426 4669052.444 2336 0.72 48.3 Pastures
4 504889.997 4669887.542 2387 0.70 34.5 Pastures
5 505002.319 4669989.1 2417 0.67 30.1 Pastures
6 504663.065 4669542.353 2281 0.69 27.2 Pastures
7 505436.288 4670404.027 2407 0.65 36.4 Pastures
8 505415.59 4670319.855 2431 0.63 32.8 Pastures
9 506019.145 4670700.147 2312 0.72 59.7 Pastures
10 506503.893 4670880.358 2234 0.68 47.8 Pastures
11 506754.34 4670882.29 2199 0.69 47.6 Pastures
12 507099.997 4671178.686 2219 0.70 35.0 Pastures
13 507443.585 4671466.251 2213 0.68 37.5 Pastures
14 507617.655 4671671.437 2223 0.69 38.1 Pastures
15 507954.619 4672239.668 2219 0.69 30.8 Pastures
16 507990.427 4672671.291 2028 0.76 27.8 Pastures
17 507986.908 4672491.908 2130 0.68 324 Pastures
18 508111.925 4672594.432 2074 0.73 25.3 Pastures
19 508673.808 4672807.484 2133 0.83 32.5 Pastures
20 510270.593 4673706.746 2095 0.66 29.0 Pastures
21 510539.254 4674380.95 1816 0.73 28.5 Pastures
22 511460.731 4674238.824 1727 0.74 33.8 Pastures
23 511531.104 4672685.228 1685 0.74 28.8 Pastures
24 508146.214 4674477.162 1730 0.78 33.4 Pastures
25 502957.903 4670574.889 1855 0.75 30.5 Pastures
26 500368.163 4666180.279 2482 0.64 36.7 Pastures
27 499723.764 4666018.007 2387 0.67 24.1 Pastures
28 499542.822 4665931.404 2387 0.62 35.5 Pastures
29 499155.948 4665888.575 2415 0.73 26.3 Pastures
30 499021.272 4666193.25 2379 0.73 24.7 Pastures
31 499184.373 4667131.838 2266 0.68 33.8 Pastures
32 498375.217 4666731.4 2167 0.65 30.2 Pastures
33 495735.802 4666193.802 2319 0.60 37.8 Pastures
34 495538.756 4665374.159 2460 0.61 42.8 Pastures
35 493512.279 4664187.471 2478 0.68 29.5 Pastures
36 493013.042 4664360.783 2373 0.71 33.7 Pastures
37 490721.216 4661023.36 2069 0.71 32.1 Pastures
38 490448.968 4660756.356 2323 0.61 34.1 Pastures
39 489023.562 4661077.037 2093 0.71 31.9 Pastures
40 472353.077 4642879.312 1581 0.62 26.5 Meadows
41 476291.192 4646520.486 1599 0.60 379 Meadows
42 479409.732 4643774.02 2406 0.70 33.8 Pastures
43 479192.265 4644609.669 2423 0.65 43.9 Pastures
44 480038.953 4645571.163 2253 0.70 26.0 Pastures
45 479111.681 4646996.292 2006 0.74 26.7 Pastures
46 477968.044 4648472.201 1997 0.71 22.6 Pastures
47 478173.921 4649769.831 1936 0.78 252 Pastures
48 477052.639 4636312.511 2251 0.73 40.3 Pastures
49 471749.798 4639023.404 2081 0.71 25.1 Pastures
50 479541.648 4653537.98 2264 0.69 209 Pastures
51 480023.637 4654124.839 2395 0.68 31.2 Pastures
52 480036.331 4657969.156 1907 0.71 32.3 Pastures
53 485594.448 4660229.935 1849 0.70 27.0 Pastures
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The possible values of the SAFI index are marked with 0 and 1. The value 0 shows
conditions unsuitable for avalanche formation, while the value 1 indicates suitable intervals
for forming an avalanche (Table 2). After assigning and reclassifying values, the formula
is accessed:

SAFI=S5C-S- LU, )

where: SAFI—Snow avalanche formation index; SC—snow cover; S—Slope terrain;
LU—Land use. After calculating the SAFI index, territories with a value of 1 represent
ideal locations for avalanches to form (Figure 5). From the database aspect, SAFI is a
product of field research (avalanche mapping), GIS analysis (DEM) and remote sensing
(Sentinel-2 data). The area where avalanches can form is 67.6 km?.

Table 2. Parameters for the calculation of the SAFI index.

Factors Categories Ratings
—1-0.6 0
Snow cover (SC)/NDSI 506 1
0-20° 0
Slope (S) 20-60° 1
>60° 0
Forests, settlements, water bodies 0
Land use (LU) Meadows, pastures, bare areas, agricultural areas 1

Once the SAFI index is obtained, the empirical analysis of source areas with climatic
conditions (winter precipitation and winter air temperature) is approached. The average
winter precipitation was obtained by linear regression of data from five meteorological
stations: Recane (580 m), étrpce (860 m), Jazince (950 m), Zapluzje (1160 m) and Restelica
(1550 m) for the observed period 1960-1985 [50,51]. In order to obtain values for the entire
study area, the formula was used:

0.0858 x DEM + 169.29, 3)

where: DEM—digital elevation model.

Values from 205 to 393 mm were obtained for the average winter precipitation. In
geographic information systems, the SAFI locations overlap with the amount of precip-
itation, and the conclusion is that all locations where avalanches can form receive more
than 300 mm of precipitation (Figure 6). This means that if all the precipitation during
December, January, and February were new snow, the potential snow depth would be 3 m.
In the lower areas of the Sar Mountains, rain often alternates with snow during the winter,
while at higher altitudes, snow is the dominant type of precipitation.

The average winter air temperature was also obtained by linear regression of data
from three meteorological stations: Prizren (402 m), Brezovica (911 m), and Dragas (1060 m),
for the observed period 1960-1988 [50,51]. In order to calculate the values for the entire
territory of the Sar Mountains, the following formula was used:

—0.0034 x DEM + 3.1576, @)

where: DEM—digital elevation model.

The average winter temperature varies from —5.7 to +1.7 °C. When overlapping
the SAFI locations with the average winter temperature on the Sar Mountains, the air
temperature in all locations where avalanches are formed is below —2 °C (Figure 6). Since
a negative temperature regime prevails at higher altitudes, a large amount of snow easily
accumulates and forms different layers depending on the number of snowfalls.

The GIS software QGIS 3.28.10. was used to analyze and process data and maps [52,53].
The obtained results are exported to the Flow-R software, which performs propagation
modeling of the other parts of the avalanche: the track, and the deposition zone [54].
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Figure 6. Overlap of SAFI sites with winter precipitation and winter air temperatures.
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2.2.2. Flow-R Software

The Flow-R software is developed to process GIS-based regional susceptibility assess-
ments of gravitational hazards [54]. Initially, it was developed for debris flows. Lately, it
has been used for shallow landslides, rock avalanches, rockfalls, and snow avalanches [55].
It enables the associated extent of propagation. The program can recognize the source area
of instabilities using available input factors and defines the run-out distance of the process
based on frictional laws and propagation probability principles [53,56].

The model comprises two primary components: automatic identification of source
areas and spread estimation. Initially, it takes into account conditional factors influencing
the formation and progression of the process, such as digital elevation models (DEM), flow
accumulation, terrain slope, and various other factors [57,58].

Identification criteria of input factors are labeled ‘favorable’ when snow avalanche
initiation is possible, ‘excluded” when initiation is improbable, and ‘ignored” when a
decision on this parameter cannot be made (Figure 7). Table 2 shows specific conditions.
Favorable intervals are marked with a score of 1, excluded intervals with a score of 0, and
ignored pixels represent territories outside the study area. By processing the input data
(snow cover, terrain slope, and land use) the source area (SAFI) was obtained.

Final propagation
Categories: _«@>> Excluded " Favourable _——~ Ignored

Figure 7. Combination of various datasets for the assessment of the source areas [51].

Afterward, the probability of avalanche flow hazard is computed utilizing flow direc-
tion algorithms and persistence functions, as described by Formulas (5)—(7), while simple
frictional principles are applied to determine the run-out distance of the snow avalanches.
Subsequently, maps depicting the distribution of energy and hazard probability are gener-
ated. Since the source mass remains unknown, the energy balance is unified, as outlined by
Formula (8) [56,59]:

fd _ (tan B;)* { tanf > 0 5)
P T (ang)” Lx € [Li+oo]
pl = 1wy (6)
fd_p
Pi Pi
pi=—"—%75P0 7)
£ plp!
Eign = Epin + AE;ot —E} (8)

In the context of calculating hazard proportions, it is necessary to break down the

components of the formula: i and j represent different flow directions; p{ 4 is the hazard
proportion in direction 7; tan p; is the slope gradient between the central cell and the cell in
direction i and x is a variable exponent. As x increases, divergence decreases, eventually
resulting in a single flow direction when x approaches infinity; p; is the proportion of flow
in direction i according to the persistence function; «(i) is the angle between the previous
direction and the direction from the central cell to cell i; pi is the hazard value in direction
i, and py is the previously determined hazard value of the central cell. E}, is the kinetic
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energy of the cell in direction i, E), is the kinetic energy of the central cell. AE;ot is the
change in potential energy for the cell in direction i, Ej[ is the energy lost due to friction in
the cell in direction i. This equation integrates various factors such as slope gradient, flow
direction, persistence function, kinetic energy, potential energy change, and energy lost due
to friction to determine hazard proportions for debris flows in different directions from a
central cell.

The friction model described by Perla et al. [60] was originally designed for analyzing
avalanches. This model relies on a non-linear friction law, which is derived as the solution
to the equation of movement governing the flow dynamics. Specifically, this law provides
the velocity V; of the flow at the termination of segment i, as outlined by Perla et al. [60]:

=

Vi = (aiw(l —expb;) + Viexp bi) ©)
a; = g(sin B; — p cos B;) (10)

oL
— an

where:  is the friction parameter, w is the mass-to-drag ratio, originally expressed as
M/D [60], B; is the slope angle of the segment, V} is the velocity at the beginning of the
segment, L; is the length of the segment, and g the acceleration due to gravity. All the
mentioned computational processes are embedded in the Flow-R software.

For snow avalanche propagation, the parameters are set as follows: a model with
friction parameter mu = 0.3 and mass-to-drag ratio m/d = 2500; Holmgren modified
direction algorithm with exponent x = 4 and height modification dh = 0.5, 1, 3, and 5 m.
Persistence algorithm with default weights were used [54,60].

All procedures and approaches used for the purpose of this research are presented in
the flow chart (Figure 8).

. . X Q.
ol Literature Sentinel-2 Q
research =
lanch lecti f ®
Ava an'c [} Se e.ctlo.n o Data set 2
mapping criteria L
Snow cover Land use
Snow avalanche
formation map
Winter Climatic Winter air
precipitation conditions temperature
Propagation %
modeling 0
[
Snow avalanche e i

susceptibility map

Figure 8. Flow chart with all the procedures and methods used in this research.
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3. Results

By processing natural conditions (snowpack, terrain slope, and land use) in GIS and
propagating the SAFI results in Flow-R software, maps of the spatial vulnerability of the
Sar Mountains to snow avalanches were obtained. For the study area, four scenarios were
designed: snow avalanches with a thickness of 0.5 m, 1 m, 3 m, and 5 m (Figure 9). In the
Flow-R software, numerical values are individually assigned to each of the four scenarios
in the direction algorithm section. Then, the final results are obtained, i.e., propagation
(distribution) maps of snow avalanche hazard.

[JStudy area
o Settlements
Snow avalanche hazard
(TS-0.5 m)

[Study area
o Settlements
Snow avalanche hazard
(TS-1 m)

[JStudy area
o Settlements
Snow avalanche hazard
(TS-3 m)

[JStudy area
o Settlements
Snow avalanche hazard
(TS-5 m)

0 5 10km

Figure 9. The SAFI-Flow-R geospatial modeling of snow avalanches (thickness of triggered snow
0.5m,1m,3 mand5m).

The area of susceptible terrain varies from the thickness of the potentially triggered
snow (TS), so it ranges from 282.9 km? (with a layer of 0.5 m thickness) to 299.9 km?
(with a layer of 5 m thickness) (Table 3). The results indicate a regional representation of
vulnerability related to simple events because snow thickness and its stability vary spatially
and temporally at the local level.

By visual analysis of the results and their processing in GIS, settlements that were
entirely or partially susceptible to snow avalanches were identified: Restelica, Brod,
Musnikovo, and the ski center Brezovica. A slope between 20-60°, the retention of a
large amount of snow during winter, and the low vegetation characterize vulnerable areas.

Restelica is the southernmost settlement in Serbia and has long been known for snow
avalanches. In February 2012, a snow avalanche killed ten people and buried 11 houses in
the southwestern part of the settlement [17]. The results of the study match the location of
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the avalanche. Another vulnerable settlement is Brod, which is located close to Restelica.
The western part of the settlement is characterized by ravines and bare land with a greater
slope. Special attention should be directed to the ski center south of Brod, where the hotel
complex is susceptible to avalanche flow. The third vulnerable settlement is Musnikovo,
located at the foot of Mountain Osljak (2212 m). A high terrain slope and sparse vegetation
characterize the southern part of Osljak. Therefore, the snow deposition zone in the event
of a major avalanche would damage the houses in the northern part of Mus$nikovo and the
regional road UroSevac-Prizren.

Table 3. Snow avalanche hazard, spatial susceptibility.

Thickness of Triggered Snow Susceptibility (km?) Share in the Total Area (%)
0.5m 282.9 29.2
1m 285.5 294
3m 294.3 30.3
5m 299.9 30.9

The fourth susceptible settlement is the ski center of Brezovica (Figure 10). Due to the
large number of tourists who often ski outside the marked trails, slab avalanches kill many
individuals every year.

200 400 m

SO

SC - susceptibility§0_ 100200 m

[Jstudy area
o Settlements
Snow avalanche hazard
(TS-5m)

0 5 10km

Figure 10. Settlements that are susceptible by snow avalanches.
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If the results of previous (two) studies for the Sar Mountains are compared, significant
differences can be observed. When the Best-Worst method (BWM) was used, nine criteria
with different weight coefficients were used. The synthetic map indicated that the following
areas are susceptible: the settlements of Restelica, Krusevo, Prevalac, and the ski center of
Brezovica [17]. Later, field research determined that Prevalac and KruSevo are not vulner-
able areas. The second study used the AHP method with 14 natural and anthropogenic
criteria for the same study area. The results showed that as many as 15 settlements are
medium or highly susceptible to snow avalanches: Lestane, Globo¢ica, Krusevo, Zlipotok,
Restelica, Brod, Radesa, Plajnik, Zrze, Kukovce, Brodosavce, Struzje, Nebregoste, Prevalac,
and Brezovica ski center [16]. When applying exclusively MCDM and criteria evaluation, it
is possible to determine the starting zone of the avalanche. However, the zone of transition
and run-out remains to be discovered due to the impossibility of simulation of propagation.

4. Discussion

Many studies worldwide today use a large number of readily available data and crite-
ria to model avalanches. A large number of used criteria does not mean more accurate final
results. It is necessary to eliminate all secondary criteria and those whose importance has
yet to be sufficiently investigated. Secondary criteria can include characteristics: lithology;,
aspect, curvature, air temperature, and distance from rivers. The criteria that are used more
and more frequently because they are processed in GIS and their significance for avalanche
modeling has not been investigated in detail are: wind exposition index (WEI), terrain
roughness index (TRI), topographic wetness index (TWI), length-slope factor (LS), relative
slope position (RSP), etc.

Observed in different regions, Varol [31] uses five criteria to determine the vulnerability
of the Uzungol area (Turkey) to snow avalanches. With the AHP method, the slope of the
terrain was given the greatest importance, whereas the vegetation density was assigned the
least. The results are classified into five vulnerability classes: very low, low, moderate, high,
and very high. Biihler et al. [61] apply automated potential release area (PRA) detection
to identify vulnerable areas by analyzing DEM factors: slope angle, aspect, curvature,
roughness, and fold. Like SAFI, PRA binary classifies the presence/absence of forest cover.
Limitations of PRA methods are reflected in applying exclusively morphometric conditions
without including climatic conditions. Rafique et al. [10] modeled the northern part of
Pakistan with snow avalanches using the AHP method. In this case, six criteria were used,
where an enormously small weighting (3%) was assigned to land use. The results are
classified into four susceptibility classes: very low, low, high, and very high. Both studies
favor convex sides of the curvature and northern exposures.

On the other hand, Vontobel et al. (2013) stated that avalanches are most often activated
on the concave sides of the relief because on concave slopes, the snow stays longer [62,63].
Regarding exposures, there are also contradictions in the studies. A large number of studies
initially determined the northern aspect as the most vulnerable, although gliding, ice, and
wet slab avalanches often occur on southern exposures [13]. Because of these differences,
it is necessary to look at avalanches as a whole, i.e., to include all types of avalanches in
the analysis.

Machine learning has been one of the most widely applied methods for predicting
natural hazards for years. In snow avalanche modeling, Bian et al. [4] combine statistical
methods and machine learning models (EBF-LR, CF-LR, EBF-MLP, CF-MLP) for Shaluli
Mountain (China). In the study, 14 criteria were used, and the final results were classified as
follows: very low, low, medium, high, and very high. Choubin et al. [22] also use machine
learning models (SVM and MDA) for avalanche prediction in the Karaj watershed (Iran).
Fourteen criteria were processed, and the results were classified into three classes: low,
moderate, and high. None of these studies report what types of avalanches were identified
in the field, although snow avalanche inventories exist. In addition, applying machine
learning models and numerous statistical methods is practically impossible in mountainous
areas with no historical data or mapped avalanches. Most studies in the literature review
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classify vulnerability into four or five classes (very low, low, medium, high, and very high).
This represents a major challenge for decision-makers and mountain rescue services when
zoning moderately and poorly susceptible areas. Very little is discussed about these classes,
and there is a possibility that there will be a transition and accumulation of avalanches on
these terrains under the influence of specific meteorological conditions.

Therefore, the SAFI-Flow-R approach was developed in this study. The first method
(SAF]) is intended to identify the terrain where all types of avalanches can be triggered.

The NDSI index shows the same snow cover values regardless of meteorological
conditions and snowpack characteristics in different regions [42]. The advantage of the
NDSI index is that the values are clearly different when the snow is present inside the
forest (<0.1) and on bare slopes or grasslands. Also, NDSI can be used to determine terrains
safe from avalanches. Locations with an NDSI value of less than 0.4 in the study are not
susceptible to retaining a larger amount of snow [42]. In addition to the snow cover interval,
a wide terrain slope interval (20-60°) was used. The width of the slope interval is large
enough to be applied in different mountain regions. In this case, the interval proved to
be successful on the example of the Rocky Mountains and the Sar Mountains. Pastures
and meadows are the most common surfaces for creating an ava-lanche, which has been
confirmed by field research. Determining the land use and their analysis with final results
can contribute to adequate land use planning for banning the construction of buildings or
agricultural activities in susceptible areas. The mountain rescue service will use synthetic
maps to better zone susceptible areas around the Brezovica ski center and other settlements.
Meteorological factors, such as winter precipitation and air temperature, give adequate
insight into the potential for snowfall and snow cover accumulation.

Another method, Flow-R, was applied to avalanche propagation (transition and
deposition zone) to model the complete anatomy of a snow avalanche. The final results
clearly show the susceptible slopes and the territory that is not susceptible.

The main advantages of the SAFI-Flow-R approach can be mentioned:

—  Universality of the model. Due to the application of only the main natural conditions,
avalanche modeling SAFI-Flow-R approach enables spatial modeling of avalanches in
different mountain regions around the world (gar Mountains, Alps, Andes, Himalayas,
Rocky Mountains, Caucasus, etc.);

— Identification of vulnerable areas at the regional level. In a relatively short period,
results on the propagation of avalanches can be obtained for territories with an area of
more than 1000 km?;

— Compact modeling of snow avalanches from the starting zone to the run-out zone;

— Avalanche spatial modeling is possible with or without a snow avalanche inventory.
Unlike many statistical methods and machine learning models, SAFI-Flow-R can offer
relevant results without historical data, which significantly facilitates the work of
researchers in parts of mountain regions where there is no avalanche inventory;

— Simple application and data processing. All data (snow cover, terrain slope, and
land use) are open data that can be processed using GIS tools and processing of
satellite images.

Like every model, the Flow-R also has certain limitations. Due to the concept of
a non-hydraulic model, the potential of Flow-R in modeling single snow avalanches is
limited. With the Flow-R software, it is possible to determine the propagation of a snow
avalanche, but due to the model’s inability to account for avalanche mass, the calculations
of process velocity (m/s) and energy (J/kg) should be considered indicative [57]. Due
to the compulsory non-volumetric definition of magnitudes, the modeling results are
biased for different flow strengths [58]. If the modeling is reduced from the regional
scale to the local level, it is necessary to combine Flow-R with 2-D hydraulic models
(RAMMS or FLO-2D). However, the numerical simulation models differ greatly in terms
of velocities. The maximum differences between the RAMMS and FLO-2D models for
the two avalanches investigated in Italy are 31-36 m/s [35]. Any modeling requires
high-resolution data. In Slovenia, researchers have determined the distribution of snow
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avalanches using very precise DEM data (0.5 m), a multi-criteria analysis and the North
Atlantic Oscillation [64—67].

Using the Sar Mountains as an example, the final results are at a spatial resolution
of 12.5 m. In some studies, data from a passive microwave radiometer (PMW) were
used to measure snow depth. Singh et al. (2024) determined snow depth in the western
Hima layas using PMW sensors [68]. However, this method has two primary limitations.
First, the spatial resolution of the images is very coarse (500 x 500 m in this case), which
significantly generalizes the actual snow depth. Under the influence of wind and other
meteorological and geomorphological factors, snow depth varies greatly over distances
of several meters, so this approach does not provide reliable data. Another limitation is
that PMW products are unreliable when the snow depth exceeds one meter [69]. This is
a significant limitation considering that snow avalanches usually occur when the snow
depth exceeds one meter [16]. For these reasons, the NDSI based on Sentinel-2 scenes was
used. It shows significant differences in values between areas with greater snow depth
(ravines without vegetation), snow in forests and areas without snow at high resolution
(12.5m) [17].

Future research should use very high-resolution data obtained by imaging the area
with a drone and remote sensing (e.g., Light Detection and Ranging—LiDAR). Under
such conditions, digital terrain models can be created with a spatial resolution of less than
1 m, which enables much more precise results and a much longer period of time for their
processing. However, such methods require significant financial support, making open
data the first and often only option for researchers in developing countries.

5. Validation of Model

Numerous approaches based on proportions, statistical criteria, etc., validate results
and assess accuracy. The ROC (receiver operating characteristic)-AUC (area under the
curve) approach is a widely used statistical method used in this study to determine the
predictive ability of the SAFI-Flow-R model. The ROC curve is a graph that is generated
from the true positive value (sensitivity) on the X-axis and the false positive on the Y-axis
at different thresholds (or cut-off points) [33]. With increasing sensitivity, there is also an
increase in false positive results. Anywhere on the curve, the ROC curve compares the
true positive and false positive values of the (1- characteristic), while the AUC shows the
overall accuracy of the model’s performance [70-72]

The ROC-AUC measures the classifier’s ability to distinguish between positive and
negative examples and ranges from 0 to 1, with a value of 1 indicating a perfect classifier,
while a value less than 0.5 indicates a random acceptance [36,45]. The AUC value obtained
in this study is 0.94, so the validation results showed that the prediction accuracy is
94%, within acceptable limits (Figure 11). Validation was done by analyzing the final
results (synthetic maps) with previously mapped avalanches (53) in geographic information
systems. Due to the difficulty of identifying the thickness of the triggered snow and
climate extremes, several scenarios must be modeled to obtain a complete picture of the
susceptibility (from 0.5 to 5 m) [73].
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Figure 11. Validation of Snow Avalanche Modeling using ROC-AUC.

6. Conclusions

Research into snow avalanches in high mountain regions is increasingly becoming the
focus of researchers due to the threat to the environment. Regions whose economy is based
on winter tourism in the mountains, such as the Sar Mountains, are particularly important.
The first step towards effective disaster management is to susceptible areas at risk in order
to prevent and mitigate avalanche damage. The most important natural conditions for
triggering snow avalanches were analyzed: snow cover, terrain slope and land use, with
a spatial resolution of the cells of 12.5 m. During the field research, 53 avalanches with
different characteristics were identified and mapped: dry snow slab, wet snow slab, loose
snow and gliding.

In this study, open data, GIS and remote sensing were used to create maps of the
susceptibility of the Sar Mountains in relation to snow depth. A universal index was
developed based on a combination of two methods: SAFI and Flow-R. SAFI was used to
determine locations where avalanches can be triggered (trigger areas), while the Flow-R
software is intended for the propagation, i.e., the simulation of the track and deposition
of the avalanche flow. Input data such as NDS], terrain slope and land use were used to
calculate the SAFI index. The relationship between climatic conditions (winter precipitation
and winter air temperature) and the locations classified as avalanches-prone was then ana-
lyzed. Although an inventory of avalanches was obtained from field surveys in this study,
the SAFI-Flow-R approach can also model avalanches without an inventory or historical
data. Using the Sar Mountains as an example, the settlements susceptible to potential
avalanche triggering were identified at a snow depth of 0.5 m: Restelica, Musnikovo, Brod
and the Brezovica ski center. The areas at risk with a snow depth of 0.5 m are 282.9 km?
in size, while 299.9 km? are potentially at risk from avalanches with a depth of 5 m. In
these settlements, one of the main tasks is to install meteorological stations to monitor
climatic elements, especially snowfall (frequency and intensity) and wind (direction and
speed). Depending on the type of precipitation (rain or snow), monitoring the change in
the microstructural accumulation of snow must also be monitored. Such an analysis would
help to adequately identify persistent weak layers.

The validation of the results is based on the ROC-AUC approach, where a predictive
power of the model of 94% was found. Due to the small number of essential and unchanging
criteria in all parts of the world, the universal index is available for broad application. By
combining GIS, remote sensing and Flow-R approaches, maps can be produced that serve as
a basis for predicting avalanche hazard in many high mountain regions. Avalanche hazard
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maps are an elementary basis for the adoption of environmental protection measures:
afforestation of bare and steep areas, artificial triggering of avalanches, prohibition of
construction in endangered areas, installation of snow nets, snow fences, etc. At the local
level, it is necessary to integrate adaptation and mitigation strategies as well as scientific
literature on the vulnerability of the terrain to snow avalanches. The results of the study
form the starting point for the development of a strategy to reduce the risk of avalanches.
Decision-makers, civil protection, mountain rescue services and national park staff should
coordinate all activities related to avalanche forecasting and protection measures. Snow
avalanches are a complex natural phenomenon that requires multidisciplinarity on a
scientific, technical and administrative level.
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