Dragan Marković. Prilog određivanju parametara u vezi sidrenja u horizontalnim prostorijama s naročitim obzirom na dužinu i raspored sidara, Beograd:Rudarsko-geološki fakultet, 1973
Dragan Milojević. Doprinos izboru metoda projektovanja podzemne eksploatacije ležišta uranijuma žilnog tipa male debljine, Beograd:Rudarsko-geološki fakultet, 1981
Dragan Komljenović. Izbor osnovnih parametara sistema hidraulični rotorni bager-samohodni transporter u složenim rudarsko-geološkim uslovima(na primjeru površinskog kopaDubrave")", Beograd:Rudarsko-geološki fakultet, 1990
Dragan Ignjatović. Izbor metode za određivanje otpora na kopanje rotornim bagerima u uslovima radne sredine površinskih kopova lignita kolubare, Beograd:Rudarsko-geološki fakultet, 1993
Dragan Polovina. Istraživanje uzajamnog uticaja konstrukcije točka i strele rotornog bagera i njihove pouzdanosti, Beograd:Rudarsko-geološki fakultet, 1999
Dragan Kaluđerović. Primena savremenih matematičkih modela za simulaciju kretanja podzemnih voda i transporta zagađenja na primeru izvorišta Vrbas, Beograd:Rudarsko-geološki fakultet, 2000
We introduce a sequence P2n of monic reciprocal polynomials with integer coefficients having the central coefficients fixed. We prove that the ratio between number of nonunimodular roots of P2n and its degree d has a limit when d tends to infinity. We present an algorithm for calculation the limit and a numerical
method for its approximation. If P2n is the sum of a fixed number of monomials we determine the central coefficients such that the ratio has the minimal limit. ...
Dragan Stankov. "The number of unimodular roots of some reciprocal polynomials" in Cmptes rendus mathematique (2020). https://doi.org/10.5802/crmath.28 М23
We present a necessary and sufficient condition for a root greater
than unity of a monic reciprocal polynomial of an even degree at least four,
with integer coefficients, to be a Salem number. This condition requires that
the minimal polynomial of some power of the algebraic integer has a linear
coefficient that is relatively large. We also determine the probability that an
arbitrary power of a Salem number, of certain small degrees, satisfies this
condition.
Dragan Stankov. "A necessary and sufficient condition for an algebraic integer to be a Salem number" in Journal de theorie des nombres de Bordeaux (2019). https://doi.org/10.5802/jtnb.1076 М23